Loading...
Search for: chemical-activation
0.009 seconds
Total 59 records

    Deep long short-term memory (LSTM) networks for ultrasonic-based distributed damage assessment in concrete

    , Article Cement and Concrete Research ; Volume 162 , 2022 ; 00088846 (ISSN) Ranjbar, I ; Toufigh, V ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper presented a comprehensive study on developing a deep learning approach for ultrasonic-based distributed damage assessment in concrete. In particular, two architectures of long short-term memory (LSTM) networks were proposed: (1) a classification model to evaluate the concrete's damage stage; (2) a regression model to predict the concrete's absorbed energy ratio. Two input configurations were considered and compared for both architectures: (1) the input was a single signal; (2) the inputs were four signals from four sides of the specimen. A comprehensive experimental study was designed and conducted on ground granulated blast furnace slag-based geopolymer concrete, providing a... 

    Hydrothermal carbonization of digested sewage sludge coupled with Alkali activation: Integrated approach for sludge handling, optimized production, characterization and Pb(II) adsorption

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 133 , 2022 ; 18761070 (ISSN) Malool, M. E ; KeshavarzMoraveji, M ; Shayegan, J ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2022
    Abstract
    Background: Integrated sewage sludge handling and heavy metal management are important issues that scientists are working to solve today. Methods: Hydrothermal carbonization of dewatered digested sewage sludge (DDSS) under various conditions is carried out in this work, followed by alkali activation. The response surface methodology is used to investigate the operating process conditions and optimize them in order to produce hydrochar with the highest modified adsorption capacity (yield and Pb2+ adsorption). Significant Findings: The ideal conditions are 182.4°C, 4.9 hours, 5.025 (w/w) water/DDSS ratio, and 3.5 (w/w) ZnCl2/DDSS ratio. In addition, the Langmuir isotherm (qmax =109.3 mg/g) and... 

    Developing an approach for maximizing neutron activation reaction rate by optimizing moderator dimensions and target position using the Monte Carlo code in combination with the GA and ANN algorithms

    , Article Annals of Nuclear Energy ; Volume 168 , 2022 ; 03064549 (ISSN) Moshkbar Bakhshayesh, K ; Sahraeian, M ; Mohtashami, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, in order to maximize the reaction rate of neutron activation (NA), an approach using combination of the MCNP code, the feed-forward neural network with the Bayesian regularization (FFNN-BR) learning algorithm, and the genetic algorithm (GA) is proposed. The MCNP code calculates the reaction rates based on the different moderator dimensions/ target positions. The calculated reaction rates with appropriate features (i.e. RT, R2S, and Z2S) are applied for training of the FFNN-BR. The trained neural network is utilized for estimating the reaction rates of the generated individuals by the GA. The results show that the trained neural network estimates the reaction rates with... 

    All-optical recurrent neural network with reconfigurable activation function

    , Article IEEE Journal of Selected Topics in Quantum Electronics ; 2022 , Pages 1-1 ; 1077260X (ISSN) Ebrahimi Dehghanpour, A ; Koohi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Optical Neural Networks (ONNs) can be promising alternatives for conventional electrical neural networks as they offer ultra-fast data processing with low energy consumption. However, lack of suitable nonlinearity is standing in their road of achieving this goal. While this problem can be circumvented in feed-forward neural networks, the performance of the recurrent neural networks (RNNs) depends heavily on their nonlinearity. In this paper, we first propose and numerically demonstrate a novel reconfigurable optical activation function, named ROA, based on adding or subtracting the outputs of two saturable absorbers (SAs). RAO can provide both bounded and unbounded outputs by facilitating an... 

    Hot deformation behavior of an aluminum-matrix hybrid nanocomposite fabricated by friction stir processing

    , Article Materials Science and Engineering A ; Volume 626 , 2015 , Pages 458-466 ; 09215093 (ISSN) Khodabakhshi, F ; Gerlich, A. P ; Simchi, A ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    A fine-grained aluminum-matrix hybrid nanocomposite reinforced with TiO2, MgO and Al3Ti nanoparticles was prepared via reactive friction stir processing (FSP) of an Al-Mg sheet with pre-placed TiO2 particles (50nm; 3.1vol%). The microstructure of the hybrid nanocomposite comprises high-angle grain boundaries (~90%) with an average size of 2μm and hard inclusions with sizes in the range of 30-50nm. Evaluation of the hot deformation behavior of the nanocomposite by uniaxial tensile testing at different temperatures (300-450°C) and strain rates (0.001-0.1s-1) shows that the deformation apparent activation energy of the nanocomposite is 137kJmol-1 at ≤300°C. The values of the activation energy... 

    Smart nanostructures for cargo delivery: uncaging and activating by light

    , Article Journal of the American Chemical Society ; Volume 139, Issue 13 , 2017 , Pages 4584-4610 ; 00027863 (ISSN) Karimi, M ; Sahandi Zangabad, P ; Baghaee Ravari, S ; Ghazadeh, M ; Mirshekari, H ; Hamblin, M. R ; Sharif University of Technology
    Abstract
    Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic... 

    Modular neuromuscular control of human locomotion by central pattern generator

    , Article Journal of Biomechanics ; Volume 53 , 2017 , Pages 154-162 ; 00219290 (ISSN) Haghpanah, S. A ; Farahmand, F ; Zohoor, H ; Sharif University of Technology
    Abstract
    The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to... 

    Enhanced decolorization of rhodamine B solution through simultaneous photocatalysis and persulfate activation over Fe/C3N4 photocatalyst

    , Article Chemical Engineering Research and Design ; Volume 153 , 2020 , Pages 709-720 Heidarpour, H ; Padervand, M ; Soltanieh, M ; Vossoughi, M ; Sharif University of Technology
    Institution of Chemical Engineers  2020
    Abstract
    In this study, organic contaminant degradation was intensified by increasing the oxidative capacity of the reaction system through simultaneous photocatalysis and heterogeneous persulfate activation. Fe nanoparticles were served as a multifunctional modifier to enhance the photoactivity of graphitic carbon nitride (CN), by tuning optical properties as well as persulfate (PS) activation rate, by introducing a new activation pathway. The synthesized photocatalysts were characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), UV-visible... 

    Muscular activity comparison between non-amputees and transfemoral amputees during normal transient-state walking speed

    , Article Medical Engineering and Physics ; Volume 95 , 2021 , Pages 39-44 ; 13504533 (ISSN) Mehryar, P ; Shourijeh, M. S ; Rezaeian, T ; Khandan, A. R ; Messenger, N ; O'Connor, R ; Farahmand, F ; Dehghani Sanij, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Research question: Would there be differences in muscle activation between healthy subjects’ (HS) dominant leg and transfemoral amputees’ (TFA) intact-leg/contralateral-limb (IL) during normal transient-state walking speed? Methods: The muscle activation patterns are obtained by calculating the linear envelope of the EMG signals for each group. The activation patterns/temporal changes are compared between-population using statistical parametric mapping (SPM). Results: Individual muscle activity showed significant differences in all muscles except vastus lateralis (VL), semitendinosus (SEM) and tensor fascia latae (TFL) activities. Significance: The information could be used by the therapists... 

    The association between motor modules and movement primitives of gait: A muscle and kinematic synergy study

    , Article Journal of Biomechanics ; Volume 134 , 2022 ; 00219290 (ISSN) Esmaeili, S ; Karami, H ; Baniasad, M ; Shojaeefard, M ; Farahmand, F ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In spite of the extensive literature on the analysis of the muscle synergies during gait, the functionality of these synergies has not been studied in detail. This study explored the relationship between the motor modules and the kinematic maneuvers involved in human walking. Motion and surface electromyography data (of 28 trunk and lower extremity muscles) were acquired from ten healthy subjects during ten trials of self-selected speed gait each. The joint angle trajectories were half-wave rectified and divided into two independent positive directional degrees-of-freedom. The muscle and kinematic synergies were both extracted using the non-negative matrix factorization (NNMF) technique and... 

    AgPt nanoparticles supported on magnetic graphene oxide nanosheets for catalytic reduction of 4-nitrophenol: studies of kinetics and mechanism

    , Article Applied Organometallic Chemistry ; Volume 31, Issue 11 , 2017 ; 02682605 (ISSN) Kohantorabi, M ; Gholami, M. R ; Sharif University of Technology
    Abstract
    AgxPt100−x (x = 0, 25, 50, 75 and 100) nanoparticles were grown on the surface of magnetic graphene oxide nanosheets (Fe3O4@GO) for the first time. The as-prepared nanocomposites were characterized using various techniques such as Fourier transform infrared spectroscopy, powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller surface area analysis, vibrating sample magnetometry and thermogravimetric analysis. The Fe3O4@GO-AgxPt100−x catalysts were applied in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol using sodium borohydride (NaBH4). The synthesized nanocomposites... 

    Theoretical modeling of actin-retrograde-flow passing clusters of confined T cell receptors

    , Article Mathematical Biosciences ; Volume 283 , 2017 , Pages 1-6 ; 00255564 (ISSN) Ghasemi V., A ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    Through the activation process of T cells, actin filaments move from the cell periphery toward the cell center. The moving filaments engage with T cell receptors and thus contribute to transportation of the signaling molecules. To study the connection between the moving actin filaments and T cell receptors, an experiment available in the literature has measured filaments flow velocity passing over a region of confined clusters of receptors. It shows that flow velocity decreases in the proximity of the receptors, and then regains its normal value after traversing the region, suggesting a dissipative friction-like connection. In this work, we develop a minimal theoretical model to re-examine... 

    Copper(ii) ions supported on functionalized graphene oxide: an organometallic nanocatalyst for oxidative amination of azolesviaC-H/C-N bond activation

    , Article New Journal of Chemistry ; Volume 45, Issue 6 , 2021 , Pages 3242-3251 ; 11440546 (ISSN) Behzadi, M ; Mahmoodi Hashemi, M ; Roknizadeh, M ; Nasiri, S ; Ramazani Saadatabadi, A ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Graphene oxide (GO) was chemically modified withpara-aminobenzoic acid (PABA) to immobilize copper(ii) ions on its surface and used as a nanocatalyst for the oxidative C(sp2)-H bond amination reaction. A practical method to prepare Cu2+supported onpara-aminobenzoic acid grafted on GO was reported. The prepared Cu2+@GO/PABA was characterized by FT-IR, XRD, SEM, AFM, TEM, UV-Vis, and ICP techniques. The results showed that the morphology, distribution, and loading of copper ions could be well-adjusted by grafting of PABA on GO. Moreover, just 2 mol% of Cu2+@GO-PABA could catalyze the C-H activation reaction of benzoxazole and benzothiazole with secondary amines in >94% yields. Also, the... 

    Effect of graphene oxide nanosheets on visible light-assisted antibacterial activity of vertically-aligned copper oxide nanowire arrays

    , Article Journal of Colloid and Interface Science ; Volume 521 , 2018 , Pages 119-131 ; 00219797 (ISSN) Kiani, F ; Ashari Astani, N ; Rahighi, R ; Tayyebi, A ; Tayebi, M ; Khezri, J ; Hashemi, E ; Rothlisberger, U ; Simchi, A ; Sharif University of Technology
    Academic Press Inc  2018
    Abstract
    In the present work, the effect of graphene oxide (GO) nanosheets on the antibacterial activity of CuO nanowire arrays under visible light irradiation is shown. A combined thermal oxidation/electrophoretic deposition technique was employed to prepare three-dimensional networks of graphene oxide nanosheets hybridized with vertically aligned CuO nanowires. With the help of standard antibacterial assays and X-ray photoelectron spectroscopy, it is shown that the light-activated antibacterial response of the hybrid material against gram-negative Escherichia coli is significantly improved as the oxide functional groups of the GO nanosheets are reduced. In order to explore the physicochemical... 

    Optical and electrical properties of the copper-carbon nanocomposites

    , Article Nanophotonics II, Strasbourg, 7 April 2008 through 9 April 2008 ; Volume 6988 , 2008 ; 0277786X (ISSN); 9780819471864 (ISBN) Ghodselahi, T ; Vesaghi, M. A ; Shafiekhani, A ; Ahmadi, M ; Sharif University of Technology
    2008
    Abstract
    We prepared copper-carbon nanocomposite films by co-deposition of RF-Sputtering and RF-PECVD methods at room temperature. These films contain different copper concentration and different size of copper nanoparticles. The copper content of these films was obtained from Rutherford Back Scattering (RBS) analyze. We studied electrical resistivity of samples versus copper content. A metal-nonmetal transition was observed by decreasing of copper content in these films. The electrical conductivity of dielectric and metallic samples was explained by tunneling and percolation models respectively. In the percolation threshold conduction results from two mechanisms: percolation and tunneling. In the... 

    Preparation and evaluation of various banana-based biochars together with ultra-high performance liquid chromatography-tandem mass spectrometry for determination of diverse pesticides in fruiting vegetables

    , Article Food Chemistry ; Volume 360 , 2021 ; 03088146 (ISSN) Keikavousi Behbahan, A ; Mahdavi, V ; Roustaei, Z ; Bagheri, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Biomass, originates from plant- or animal-based materials with a huge potential to be reused. Here we report a simple, rapid and inexpensive method for preparation of modified biochars derived from the banana peel followed by their applications in pipette-tip micro solid-phase extraction (PT-µSPE). Due to the contribution of various effective parameters on modification of banana peel biochars (BPBs), Taguchi design was used to optimize activation temperature, activation repetition, treatment material and impregnation ratio. Efficiency of the prepared BPBs were studied by extraction of twelve various pesticides, as model analytes with an extended range of log P values (1.4–5.7), followed by... 

    An innovative, highly stable Ag/ZIF-67@GO nanocomposite with exceptional peroxymonosulfate (PMS) activation efficacy, for the destruction of chemical and microbiological contaminants under visible light

    , Article Journal of Hazardous Materials ; Volume 413 , 2021 ; 03043894 (ISSN) Kohantorabi, M ; Giannakis, S ; Moussavi, G ; Bensimon, M ; Gholami, M. R ; Pulgarin, C ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this work, Ag nanoparticles were loaded on ZIF-67 covered by graphene oxide (Ag/ZIF-67@GO), and its catalytic performance was studied for the heterogeneous activation of peroxymonosulfate (PMS) under visible-light. The catalyst surface morphology and structure were analyzed by FT-IR, XRD, XPS, DRS, FE-SEM, EDX, TEM, BET, ICP-AES and TGA analysis. The efficacy of PMS activation by the Ag/ZIF-67@GO under visible light was assessed by phenol degradation and E. coli inactivation. Phenol was completely degraded within 30 min by HO•, SO4•− and O2•− generated through the photocatalytic PMS activation. In addition, total E. coli inactivation was attained in 15 min that confirmed the highly... 

    Ultrasound-assisted synthesis of highly functionalized benzo[1,3]thiazine via Cu-catalyzed intramolecular C–H activation reaction from isocyanides, aniline-benzoyl(acetyl) isothiocyanate adduct

    , Article Ultrasonics Sonochemistry ; Volume 50 , 2019 , Pages 1-5 ; 13504177 (ISSN) Nematpour, M ; Rezaee, E ; Jahani, M ; Tabatabai, S. A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A facile sonochemical route for the synthesis of benzo[1,3]thiazine derivatives via a one pot, multicomponent, intramolecular C–H activation reaction from isocyanides, aniline and benzoyl (acetyl) isothiocyanate adduct catalyzed by copper (I) iodide in acetone at 30 °C have been reported. The advantages of the described method include using simple and readily available starting materials and performing under mild copper-catalytic reaction conditions and also obtaining pure product with high yield without applying column chromatography. Furthermore, using the sonochemical methodology as an efficient method led to reduce the reaction times. © 2018 Elsevier B.V  

    Ultrasound-assisted synthesis of highly functionalized benzo[1,3]thiazine via Cu-catalyzed intramolecular C–H activation reaction from isocyanides, aniline-benzoyl(acetyl) isothiocyanate adduct

    , Article Ultrasonics Sonochemistry ; Volume 50 , 2019 , Pages 1-5 ; 13504177 (ISSN) Nematpour, M ; Rezaee, E ; Jahani, M ; Tabatabai, S. A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A facile sonochemical route for the synthesis of benzo[1,3]thiazine derivatives via a one pot, multicomponent, intramolecular C–H activation reaction from isocyanides, aniline and benzoyl (acetyl) isothiocyanate adduct catalyzed by copper (I) iodide in acetone at 30 °C have been reported. The advantages of the described method include using simple and readily available starting materials and performing under mild copper-catalytic reaction conditions and also obtaining pure product with high yield without applying column chromatography. Furthermore, using the sonochemical methodology as an efficient method led to reduce the reaction times. © 2018 Elsevier B.V