Loading...
Search for: closed-loop
0.013 seconds
Total 232 records

    CRA based control of fractional order systems subject to control signal constraint

    , Article International Conference on Control, Automation and Systems ; 2011 , Pages 268-272 ; 15987833 (ISSN) ; 9781457708350 (ISBN) Tabatabaei, M ; Haeri, M ; Sharif University of Technology
    Abstract
    An approach is proposed to control transient response of fractional order systems with maximum permissible control signal. This goal is achieved using a newly suggested characteristic ratio assignment method. Based on the proposed method, the generalized time constant τ and the characteristic ratios including their pattern, an adjustable parameter β, and the product of two successive characteristic ratios ρ are determined such that predefined level of overshoot and time specification of closed loop step response are obtained while the control signal is confined to a pre assigned maximum magnitude. The raised issue is solved by defining an optimization problem in which the design parameters... 

    Simulation and control of monomer conversion in a continuous emulsion polymerization reactor

    , Article IFAC Proceedings Volumes (IFAC-PapersOnline), 7 June 2015 through 10 June 2015 ; Volume 48, Issue 8 , 2015 , Pages 315-320 ; 14746670 (ISSN) Barazandegan, M ; Shahrokhi, M ; Abedini, H ; Vafa, E ; Guay, M ; Gopaluni, B ; Huang, B ; Findeisen, R ; Sharif University of Technology
    IFAC Secretariat  2015
    Abstract
    A detailed pseudo-bulk model has been used for prediction of conversion and particle size distribution (PSD) of vinyl acetate in a continuous emulsion polymerization reactor. Finite volume (FV) and moment techniques are applied for solving population balance equation under continuous operation. It is found that both methods can predict sustained oscillations in the monomer conversion, however the FV method matches the experimental data better than the moment method. The monomer conversion and free surfactant concentration are controlled via two single control loops. In this work, a new control strategy for controlling monomer conversion has been proposed. It has been shown that monomer... 

    Inverse and forward dynamics of N-3RPS manipulator with lockable joints

    , Article Robotica ; June , 2015 , pp. 1383-1402 ; 02635747 (ISSN) Taherifar, A ; Salarieh, H ; Alasty, A ; Honarvar, M ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    The N-3 Revolute-Prismatic-Spherical (N-3RPS) manipulator is a kind of serial-parallel manipulator and has higher stiffness and accuracy compared with serial mechanisms, and a larger workspace compared with parallel mechanisms. The locking mechanism in each joint allows the manipulator to be controlled by only three wires. Modeling the dynamics of this manipulator presents an inherent complexity due to its closed-loop structure and kinematic constraints. In the first part of this paper, the inverse kinematics of the manipulator, which consists of position, velocity, and acceleration, is studied. In the second part, the inverse and forward dynamics of the manipulator is formulated based on... 

    Observer-Based Output Feedback Linearization Control with Application to HIV Dynamics

    , Article Industrial and Engineering Chemistry Research ; Volume 54, Issue 10 , January , 2015 , Pages 2697-2708 ; 08885885 (ISSN) Hajizadeh, I ; Shahrokhi, M ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    This paper presents the feedback linearization control of HIV infection. A multi-input multi-output (MIMO) dynamic nonlinear HIV infection model for this purpose has been used. For this purpose, three widely used drugs are considered. A Luenberger-like nonlinear observer (LNO) is designed for estimation of unavailable states. To minimize the side effects of drugs, the concentration of ZDV which has the highest side effect is fixed to a minimum value and the external controllers parameters are obtained by maximizing an objective function. In the control design, limitations on drug consumption and unavailability of all states are taken into account. The closed-loop stability has been... 

    Direct torque control of brushless doubly fed induction machine

    , Article International Journal of Control and Automation ; Volume 3, Issue 4 , 2010 , Pages 5- ; 20054297 (ISSN) Fattahi, S. J ; Khayyat, A. A ; Sharif University of Technology
    2010
    Abstract
    This article contributes a torque control based on hysteresis for Brushless Doubly Fed Induction Machine (BDFM) through machine analysis and extracting the d-q parameters that influence on the machine behavior. In this research, a Direct Torque Control (DTC) based on stator flux-oriented vectors and machine's relation and equations with voltage and current of both stators have been introduced. The control for the BDFM is implemented by a voltage source inverter connected to the second stator as a torque controller that uses the classical field-oriented control method widely used in voltage sector selection. Finally BDFM as a closed loop model with DTC is simulated and evaluated  

    Robustness in fractional proportional-integral-derivative-based closed-loop systems

    , Article IET Control Theory and Applications ; Volume 4, Issue 10 , Volume 4, Issue 10 , 2010 , Pages 1933-1944 ; 17518644 (ISSN) Akbari Moornani, K ; Haeri, M ; Sharif University of Technology
    Abstract
    Robustness of a fractional proportional-integral-derivative (PID)-based control system is investigated. At first the largest pathwise connected region subset of a box in three-dimensional space of the parameters of the model is determined such that the closed-loop system is bounded-input bounded-output stable for any point inside it. Then a value that represents the size (in a specified sense) of the calculated region in the first stage and can be considered as a margin for the robustness of the closed-loop system is computed. Furthermore, lower and upper frequency bounds required in depiction of boundaries of the region and computing the mentioned margin are provided. Some special cases in... 

    Direct Torque Control of Brushless Doubly Fed Induction Machine

    , Article SPEEDAM 2010 - International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 14 June 2010 through 16 June 2010 ; June , 2010 , Pages 1744-1747 ; 9781424449873 (ISBN) Fattahi, S. J ; Khayyat, A. A ; Sharif University of Technology
    2010
    Abstract
    This article contributes a torque control based on hysteresis for Brushless Doubly Fed Induction Machine (BDFM) through machine analysis and extracting the d-q parameters that influence on the machine behavior. In this research, a Direct Torque Control (DTC) based on stator flux-oriented vectors and machine's relation and equations with voltage and current of both stators have been introduced. The control for the BDFM is implemented by a voltage source inverter connected to the second stator as a torque controller that uses the classical field-oriented control method widely used in voltage sector selection. Finally BDFM as closed loop model with DTC is simulated and evaluated  

    Design of sliding mode and model reference adaptive control strategies for multivariable tape transport mechanism: a performance comparison

    , Article Microsystem Technologies ; Volume 22, Issue 2 , 2016 , Pages 419-431 ; 09467076 (ISSN) Abbasi, M. H ; Moradian, H ; Moradi, H ; Sharif University of Technology
    Springer Verlag 
    Abstract
    This paper presents sliding mode control and model reference adaptive control strategies for the tape transport mechanism. A nonlinear multivariable MIMO model of the process, consisting of take-up and supply reel servos for tape tension control and capstan servo for speed control is considered. The sliding mode control is applied for the nonlinear dynamic model of the process, while the model reference adaptive control deals with the linearized one. Moreover, in order to associate with the realistic model of system, design of controllers is accomplished with respect to parametric uncertainties. It is shown that both control strategies can guarantee asymptotic stability of the closed-loop... 

    Inverse and forward dynamics of N-3RPS manipulator with lockable joints

    , Article Robotica ; Volume 34, Issue 6 , 2016 , Pages 1383-1402 ; 02635747 (ISSN) Taherifar, A ; Salarieh, H ; Alasty, A ; Honarvar, M ; Sharif University of Technology
    Cambridge University Press 
    Abstract
    The N-3 Revolute-Prismatic-Spherical (N-3RPS) manipulator is a kind of serial-parallel manipulator and has higher stiffness and accuracy compared with serial mechanisms, and a larger workspace compared with parallel mechanisms. The locking mechanism in each joint allows the manipulator to be controlled by only three wires. Modeling the dynamics of this manipulator presents an inherent complexity due to its closed-loop structure and kinematic constraints. In the first part of this paper, the inverse kinematics of the manipulator, which consists of position, velocity, and acceleration, is studied. In the second part, the inverse and forward dynamics of the manipulator is formulated based on... 

    Neural network-based synchronization of uncertain chaotic systems with unknown states

    , Article Neural Computing and Applications ; Volume 27, Issue 4 , 2016 , Pages 945-952 ; 09410643 (ISSN) Bagheri, P ; Shahrokhi, M ; Sharif University of Technology
    Springer-Verlag London Ltd  2016
    Abstract
    In this paper, synchronization of chaotic systems with unknown parameters and unmeasured states is investigated. Two nonidentical chaotic systems in the framework of a master and a slave are considered for synchronization. It is assumed that both systems have uncertain dynamics, and states of the slave system are not measured. To tackle this challenging synchronization problem, a novel neural network-based adaptive observer and an adaptive controller have been designed. Moreover, a neural network is utilized to approximate the unknown dynamics of the slave system. The proposed method imposes neither restrictive assumption nor constraint on the dynamics of the systems. Furthermore, the... 

    Ultimate state boundedness of underactuated spacecraft subject to an unmatched disturbance

    , Article Journal of Theoretical and Applied Mechanics (Poland) ; Volume 55, Issue 3 , 2017 , Pages 1055-1066 ; 14292955 (ISSN) Moradi, R ; Alikhani, A ; Fathi Jegarkandi, M ; Sharif University of Technology
    Polish Society of Theoretical and Allied Mechanics  2017
    Abstract
    Ultimate state boundedness for underactuated spacecraft subject to large non-matched disturbances is attained. First, non-smooth time-invariant state feedback control laws that make the origin asymptotically stable are obtained. Then, the controller is extended to make the closed-loop system globally uniformly ultimately bounded under the following conditions: 1) the disturbances acting on the directly actuated states are known and 2) the disturbance acting on the unactuated state is bounded and its profile need not be known. Finally, numerical simulations are presented to verify the analytical results. A large step disturbance is considered, and it is shown that the proposed controller... 

    Design and implementation of a new body weight support (BWS) system

    , Article 5th RSI International Conference on Robotics and Mechatronics, IcRoM 2017, 25 October 2017 through 27 October 2017 ; 2018 , Pages 69-75 ; 9781538657034 (ISBN) Hamidi Rad, M ; Behzadipour, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Gait training is a critical rehabilitation procedure for patients suffering from walking problems. It, however, puts the therapist in high orthopedic risk since he should prevent the patient from possible falling. Body weight support system is a new technology helping such patients and the involved therapist by unloading a percent of the patient's weight. A new over-ground body weight support is introduced in this article. The system is composed of two main modules namely unloading and traction. The unloading module is capable of suspending an individual's weight up to 1000N dynamically. The whole system is attached to an overhead rail, moving over the head of the patient by the traction... 

    Swing up and arm trajectory tracking of the furuta pendulum with sliding mode control

    , Article 5th RSI International Conference on Robotics and Mechatronics, IcRoM 2017, 25 October 2017 through 27 October 2017 ; 2018 , Pages 346-351 ; 9781538657034 (ISBN) Karamin Manesh, M. J ; Nikzad Goltapeh, A ; Sharif University of Technology
    Abstract
    In this paper, the swing-up problem of the Furuta pendulum has been solved by introducing a new combined method based on the frequency response, and the sliding mode method. Furthermore, a trajectory tracking controller has been introduced and applied to the Furuta pendulum; which the pendulum remained regulated at the upward position, while the arm tracks a desired time-varying trajectory. The hierarchical sliding mode control (HSMC) approach has been employed to achieve the mentioned goals. The Furuta system is made up of two subsystems. Based on this physical structure, the hierarchical structure of the sliding surfaces is designed as follows: first, the sliding surface of each subsystem... 

    Optimal supplementary frequency controller design using the wind farm frequency model and controller parameters stability region

    , Article ISA Transactions ; Volume 74 , 2018 , Pages 175-184 ; 00190578 (ISSN) Toulabi, M. R ; Bahrami, S ; Ranjbar, A. M ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2018
    Abstract
    In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is... 

    Modeling and control for cooperative transport of a slung fluid container using quadrotors

    , Article Chinese Journal of Aeronautics ; Volume 31, Issue 2 , 2018 , Pages 263-273 ; 10009361 (ISSN) Sayyadi, H ; Soltani, A ; Sharif University of Technology
    Chinese Journal of Aeronautics  2018
    Abstract
    In this paper, dynamic modeling and control problem for transfer of a sloshing liquid container suspended through rigid massless links from a team of quadrotors are investigated. By the proposed solution, pose of the slung container and fluid sloshing modes are stabilized appropriately. Dynamics of the container-liquid-quadrotors system is modeled by Euler-Lagrange method. Fluid slosh dynamics is included using multi-mass-spring model. According to derived model, a proper control law is designed for a system with three or more quadrotors. Implementing the proposed control law, quadrotors can control pose of the container, directions of the links and liquid sloshing modes simultaneously.... 

    Nested saturation control based on the extended state observer: twin rotor MIMO system

    , Article 5th International Conference on Control, Instrumentation, and Automation, ICCIA 2017, 21 November 2017 through 23 November 2017 ; Volume 2018-January , 2018 , Pages 55-59 ; 9781538621349 (ISBN) Amini, S ; Ahi, B ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    This paper is concerned with the control of a laboratory setup called the twin rotor MIMO system. A novel nested saturation controller based on well-known extended state observer is proposed. Extended state observer has been utilized to tackle control difficulties due to existence of a high coupling between system channels. Nested saturation control is also utilized to improve closed-loop performance of system considering inevitable input saturation constraint. Besides the complexity of system, the proposed method can be simply designed and implemented. Numerical simulations are utilized to demonstrate the effectiveness of proposed method in comparison with the existing ones. © 2017 IEEE  

    Robust composite nonlinear feedback control for spacecraft rendezvous systems under parameter uncertainty, external disturbance, and input saturation

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; 2018 ; 09544100 (ISSN) Namdari, H ; Allahverdizadeh, F ; Sharifi, A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    This paper presents a new robust composite nonlinear feedback control law for accurate, smooth, and fast regulation in the presence of parameter uncertainties, external disturbances, and input saturation for a class of spacecraft rendezvous systems. The novel proposed method consists of the original composite nonlinear feedback part for good transient performance plus a nonlinear disturbance rejection part for reducing the steady-state error stemming from variable disturbances and simultaneously producing feasible control input. The nonlinear disturbance rejection relies on sliding-mode observer for disturbance estimation. Closed-loop system stability has been proved with the Lyapunov... 

    Guiding medical needles using single-point tissue manipulation

    , Article Proceedings - IEEE International Conference on Robotics and Automation, 12 May 2009 through 17 May 2009, Kobe ; 2009 , Pages 2705-2710 ; 10504729 (ISSN); 9781424427895 (ISBN) Torabi, M ; Hauser, K ; Alterovitz, R ; Duindam, V ; Goldberg, K ; Sharif University of Technology
    2009
    Abstract
    This paper addresses the use of robotic tissue manipulation in medical needle insertion procedures to improve targeting accuracy and to help avoid damaging sensitive tissues. To control these multiple, potentially competing objectives, we present a phased controller that operates one manipulator at a time using closed-loop imaging feedback. We present an automated procedure planning technique that uses tissue geometry to select the needle insertion location, manipulation locations, and controller parameters. The planner uses a stochastic optimization of a cost function that includes tissue stress and robustness to disturbances. We demonstrate the system on 2D tissues simulated with a... 

    A guidance algorithm for launch to equatorial orbit

    , Article Aircraft Engineering and Aerospace Technology ; Volume 81, Issue 2 , 2009 , Pages 137-148 ; 00022667 (ISSN) Marrdonny, M ; Mobed, M ; Sharif University of Technology
    2009
    Abstract
    Purpose - The purpose of this paper is to propose a new guidance algorithm for launching a satellite using an expendable rocket from an equatorial site to an equatorial low-Earth orbit. Design/methodology/approach - Guidance during endoatmospheric portion is based on a nominal trajectory computed prior to take-off. A set of updating computations begins anew at the time instant tg of transition from endoatmosphere to exoatmosphere. The updating computations determine a guidance trajectory and an associated control law for the remainder of path by taking into account the rocket state at time tg. Thus, the overall guidance involves both initial and midcourse operations, and it has both open-... 

    Control of malaria outbreak using a non-linear robust strategy with adaptive gains

    , Article IET Control Theory and Applications ; Volume 13, Issue 14 , 2019 , Pages 2308-2317 ; 17518644 (ISSN) Rajaei, A ; Vahidi Moghaddam, A ; Chizfahm, A ; Sharifi, M ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    The aim of this study is to develop a non-linear robust controller with adaptive gains in order to prevent malaria epidemic as a positive system with an uncertain model. The malaria outbreak is modelled by seven non-linear coupled differential equations for the population variables: susceptible, exposed, symptomatic infected and recovered humans and the susceptible, exposed and infected mosquitoes. The non-linear robust adaptive integral-sliding-mode controller is developed in order to appropriately adjust the use of treated bednets, treatment rate of infected individuals and the use of insecticide spray to control malaria epidemic. Accordingly, the numbers of exposed and infected humans and...