Loading...
Search for: closed-loop
0.021 seconds
Total 232 records

    Water-energy nexus approach for optimal design of hybrid cooling system in direct reduction of iron plant

    , Article Journal of Cleaner Production ; Volume 287 , 2021 ; 09596526 (ISSN) Hashemi Beni, M ; Morad Bazofti, M ; Akbari Mohammadi, A ; Mokhtari, H ; Saboohi, Y ; Golkar, B ; Ghandi, A. H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Direct reduction of iron process in steel industry has special production conditions. Low quality cooling water, low cold and high hot cooling water temperature, space limitation for new equipment installation, high value-added of product and severe effect of cooling water temperature on production rate are of these conditions. Considering technical and economic constraints and limitations, this situation makes this process an attractive case study for converting the existing wet cooling tower to hybrid cooling system. In this paper, based on integration of process, dry and wet cooling system and ambient conditions profiles, a new method for designing hybrid cooling system has been proposed.... 

    Simultaneous trajectory tracking and aerial manipulation using a multi-stage model predictive control

    , Article Aerospace Science and Technology ; Volume 112 , 2021 ; 12709638 (ISSN) Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    Elsevier Masson s.r.l  2021
    Abstract
    With the exception of a few works, the current approaches to aerial manipulation control do not typically consider the system constraints in the control design process. Also, the issue of closed-loop stability in the presence of system constraints is not thoroughly analyzed. In this paper, a novel multi-stage model predictive control (MPC)-based approach for aerial manipulation is proposed to ensure the closed-loop stability in the presence of model uncertainties and external disturbances, while satisfying the operational constraints. The detailed nonlinear model of a general aerial manipulator, consisting of a quadrotor equipped with a 3 degrees of freedom manipulator, is first developed... 

    Hybridization of an interactive fuzzy methodology with a lexicographic min-max approach for optimizing a multi-period multi-product multi-echelon sustainable closed-loop supply chain network

    , Article Computers and Industrial Engineering ; Volume 158 , 2021 ; 03608352 (ISSN) Gholamian, N ; Mahdavi, I ; Mahdavi Amiri, N ; Tavakkoli Moghaddam, R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Here, a fuzzy multi-period multi-echelon multi-objective mixed-integer non-linear programming (MOMINLP) model is considered for a sustainable multi-product multi-site multi-distribution multi-customer supply chain in forward flow having multi-centers for collecting, checking, repairing and decomposing and multi-disposal centers in the reverse flow. Minimizing the total cost of the closed-loop supply chain (CLSC), elevating the customer satisfaction degrees, minimizing the total waiting time, minimizing the manufacturing site greenhouse gases and minimizing the CO2 emissions from vehicles are considered as the objective functions. Furthermore, integration of strategic decisions of flow... 

    A green closed-loop supply chain network: A bi-objective mixed integer linear programming model

    , Article International Journal of Operational Research ; Volume 41, Issue 4 , 2021 , Pages 492-513 ; 17457645 (ISSN) Gholipour, S ; Salehian, F ; Lamouchi, H ; Mina, H ; Sharif University of Technology
    Inderscience Publishers  2021
    Abstract
    The increasing level of customer awareness and application of environmental laws by governments, on the one hand, and the increasing number of competitors, on the other hand, has obliged industry owners to include green activities in the design of the supply chain network. Green activities include any type of action that reduces environmental degradation. Hence, this study seeks to develop a bi-objective, mixed integer linear programming (MILP) model for designing a green supply chain network. In the proposed model, the minimisation of costs and detrimental environmental effects are discussed. LP metric method is used to solve the bi-objective model and the proposed model is run by using... 

    Development of a hybrid reference model for performance evaluation of resolvers

    , Article IEEE Transactions on Instrumentation and Measurement ; Volume 70 , 2021 ; 00189456 (ISSN) Khajueezadeh, M ; Saneie, H ; Nasiri Gheidari, Z ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Resolver is an electromagnetic position sensor typically used in the closed-loop control of permanent magnet synchronous motors (PMSMs). In terms of structure and principle of operation, resolvers are very similar to electrical machines. In this regard, different numerical and analytical models have been developed for the performance prediction of a resolver, with a compromise between computational burden and accuracy. Therefore, a fast and accurate hybrid model of the resolver is presented in this article, which can be used for resolvers with different structures. Additionally, this model can easily be implemented in software such as MATLAB/SIMULINK. The performance of different variable... 

    A novel fuzzy multi-objective circular supplier selection and order allocation model for sustainable closed-loop supply chains

    , Article Journal of Cleaner Production ; Volume 287 , 2021 ; 09596526 (ISSN) Khalili Nasr, A ; Tavana, M ; Alavi, B ; Mina, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Maximizing the value of resources and producing less waste are strategic decisions affecting sustainability and competitive advantage. Sustainable closed-loop supply chains (CLSCs) are designed to minimize waste by circling back (repairing, reselling, or dismantling for parts) previously discarded products into the value chain. This study presents a novel two-stage fuzzy supplier selection and order allocation model in a CLSC. In Stage 1, we use the fuzzy best-worst method (BWM) to select the most suitable suppliers according to economic, environmental, social, and circular criteria. In Stage 2, we use a multi-objective mixed-integer linear programming (MOMILP) model to design a... 

    Enlarging the region of stability in robust model predictive controller based on dual-mode control

    , Article Transactions of the Institute of Measurement and Control ; Volume 43, Issue 14 , 2021 , Pages 3085-3092 ; 01423312 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Industrial processes are inherently nonlinear with input, state, and output constraints. A proper control system should handle these challenging control problems over a large operating region. The robust model predictive controller (RMPC) could be an linear matrix inequality (LMI)-based method that estimates stability region of the closed-loop system as an ellipsoid. This presentation, however, restricts confident application of the controller on systems with large operating regions. In this paper, a dual-mode control strategy is employed to enlarge the stability region in first place and then, trajectory reversing method (TRM) is employed to approximate the stability region more accurately.... 

    L1 Adaptive integrated guidance and control for flexible hypersonic flight vehicle in the presence of dynamic uncertainties

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 235, Issue 8 , 2021 , Pages 1521-1531 ; 09596518 (ISSN) Khankalantary, S ; Rezaee Ahvanouee, H ; Mohammadkhani, H ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    In this article, an integrated guidance and control design method for general nonlinear flexible hypersonic flight vehicles in the presence of dynamic uncertainties based on the (Formula presented.) adaptive state feedback control approach is presented. Initially, the 6-degree-of-freedom integrated guidance and autopilot dynamic model is organized using the combination of flexible uncertain hypersonic flight vehicle dynamic model and hypersonic flight vehicle-target relative motion model whereas aerodynamic and model uncertainties, cross-coupling effects, and disturbances are considered. The proposed integrated guidance and control method based on (Formula presented.) adaptive control scheme... 

    Robust optimization of risk-aware, resilient and sustainable closed-loop supply chain network design with Lagrange relaxation and fix-and-optimize

    , Article International Journal of Logistics Research and Applications ; 2021 ; 13675567 (ISSN) Lotfi, R ; Sheikhi, Z ; Amra, M ; AliBakhshi, M ; Weber, G. W ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    This study explores a Robust, Risk-aware, Resilient, and Sustainable Closed-Loop Supply Chain Network Design (3RSCLSCND) to tackle demand fluctuation like COVID-19 pandemic. A two-stage robust stochastic multiobjective programming model serves to express the proposed problems in formulae. The objective functions include minimising costs, CO2 emissions, energy consumption, and maximising employment by applying Conditional Value at Risk (CVaR) to achieve reliability through risk reduction. The Entropic Value at Risk (EVaR) and Minimax method are used to compare with the proposed model. We utilise the Lp-Metric method to solve the multiobjective problem. Since this model is complex, the... 

    A dynamical approach to topography estimation in atomic force microscopy based on smooth orthogonal decomposition

    , Article Nonlinear Dynamics ; Volume 103, Issue 3 , 2021 , Pages 2345-2363 ; 0924090X (ISSN) Rafiee Javazam, M ; Nejat Pishkenari, H ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Atomic force microscope (AFM) is one of the most versatile and powerful devices capable of producing high-resolution images of nanomaterial. Many researchers are widely investigating to improve the scanning speed and image quality of AFM by proposing different techniques. Here, we aim to present a novel approach based on the smooth orthogonal decomposition for the estimation of the surface topography in AFM. The technique proposed in this research not only eliminates the need for a closed-loop controller but also acquires the surface three-dimensional shape (topography) very quickly and accurately. The proposed technique relies on the fact that in the tapping mode of atomic force microscopy,... 

    Adaptive asymptotic tracking control of uncertain fractional-order nonlinear systems with unknown quantized input and control directions subject to actuator failures

    , Article JVC/Journal of Vibration and Control ; 2021 ; 10775463 (ISSN) Sabeti, F ; Shahrokhi, M ; Moradvandi, A ; Sharif University of Technology
    SAGE Publications Inc  2021
    Abstract
    This article addresses an adaptive backstepping control design for uncertain fractional-order nonlinear systems in the strict-feedback form subject to unknown input quantization, unknown state-dependent control directions, and unknown actuator failure. The system order can be commensurate or noncommensurate. The total number of failures is allowed to be infinite. The Nussbaum function is used to deal with the problem of unknown control directions. Compared with the existing results, the control gains can be functions of states and the knowledge of quantization parameters and characteristics of the actuator failure are unknown. By applying the backstepping control approach based on the... 

    A new fast finite time fractional order adaptive sliding-mode control for a quadrotor

    , Article 7th International Conference on Control, Instrumentation and Automation, ICCIA 2021, 23 February 2021 through 24 February 2021 ; 2021 ; 9780738124056 (ISBN) Naderi Soorki, M ; Vedadi Moghaddam, T ; Emamifard, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Fast finite time adaptive sliding mode control of a quadrotor in the presence of uncertainties and unbounded external disturbances is dealt in this paper. To this end, a fractional order sliding surface is first defined and then, an adaptive sliding mode controller is designed to guarantee finite time stability with fast convergence of quadrotor states to the desired trajectory. In this controller, it is assumed that the upper bound of the model uncertainties and external disturbances is a nonlinear function with unknown coefficients. These coefficients are estimated via stable adaptive laws. Finite time stability of the closed-loop system is analyzed using Lyapunov theorem. Simulation... 

    Delay-Independent regulation of blood glucose for type-1 diabetes mellitus patients via an observer-based predictor feedback approach by considering quantization constraints

    , Article European Journal of Control ; Volume 63 , January , 2021 , Pages 240-252 ; 09473580 (ISSN) Golestani, F ; Tavazoei, M. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Diabetes, as a widespread chronic disease, is caused by the increase of blood glucose concentration (BGC) due to pancreatic insulin production failure and/or insulin resistance in the body. The artificial pancreas (AP) known as a closed-loop insulin delivery control system consists of a glucose sensor for BGC measurement, a control algorithm for calculation of exogenous insulin delivery rate (IDR), and an insulin infusion pump. The AP provides a closed-loop glucose-insulin regulatory system for type-1 diabetes mellitus (T1DM) patients in order to effectively reduce the high BGC level. In this paper, we aim to design a controller in order to regulate the BGC of T1DM patients at its basal... 

    Real-time topography and hamaker constant estimation in atomic force microscopy based on adaptive fading extended kalman filter

    , Article International Journal of Control, Automation and Systems ; Volume 19, Issue 7 , 2021 , Pages 2455-2467 ; 15986446 (ISSN) Haghighi, M.S ; Nejat Pishkenari, H ; Sharif University of Technology
    Institute of Control, Robotics and Systems  2021
    Abstract
    In this study, a novel technique based on adaptive fading extended Kalman filter for atomic force microscopy is proposed to directly estimate the topography of a sample surface without needing any control system. While in conventional imaging techniques, the scanning speed or the bandwidth is limited due to a relatively large settling time, the method proposed in this research is able to address this issue and estimate the topography throughout transient oscillation of the microcantilever. With this aim, an estimation process using an adaptive fading extended Kalman filter (augmented with forgetting factor) as the system observer is designed and coupled with the system dynamics to obtain... 

    A multi-model control of nonlinear systems: a cascade decoupled design procedure based on stability and performance

    , Article Transactions of the Institute of Measurement and Control ; Volume 42, Issue 7 , 2020 , Pages 1271-1280 Ahmadi, M ; Rikhtehgar, P ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Recently, the multi-model controllers design was proposed in the literature based on integrating of the stability and performance criteria. Although these methods overcome the redundancy problem, the decomposition step is very complex and time consuming. In this paper, a cascade design of multi-model control is presented that is made from two sequential steps. In the first step, the nonlinear system is decomposed into a set of linear subsystems by just considering the stability criterion. In this step, the gap metric is used as a smart tool to measure the distance between linear subsystems. While the closed-loop stability is gained through the first step, the performance is improved in the... 

    An integrated best–worst decomposition approach of nonlinear systems using gap metric and stability margin

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; 2020 Ahmadi, M ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    This article uses gap metric method to design a multi-model controller for nonlinear systems. In order to decompose the nonlinear system into a reduced nominal local models bank as much as possible, and assure the closed-loop robust stability and performance, the decomposition and designing of local controllers are integrated. To this end, robust stability, performance, and gap metric are incorporated to build a binary distance matrix that supports defining the driving and dependence powers for each local model. Then a best–worst analysis is employed considering the driving and dependence powers to find out the nominal local models. The proposed approach screens the value of all local models... 

    Numerical analysis of photovoltaic solar panel cooling by a flat plate closed-loop pulsating heat pipe

    , Article Solar Energy ; Volume 206 , 2020 , Pages 455-463 Alizadeh, H ; Alhuyi Nazari, M ; Ghasempour, R ; Shafii, M. B ; Akbarzadeh, A. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Photovoltaic (PV) panels provide a suitable way for the direct conversion of solar energy into electricity. The electrical output and efficiency of PV modules are dependent on working temperature. The present study contributes to investigate the efficiency of utilizing a flat plate closed-loop pulsating heat pipe (CLPHP) to cool down a PV panel in both thermal and economic aspects. Accordingly, a numerical investigation is employed to obtain the surface temperature and electrical gain of the PV panel through four scenarios, including natural cooling without additional equipment, CLPHP-based passive cooling, CLPHP-based active cooling, and a conventional flat plate cooling methods. The... 

    Wind-tolerant optimal closed loop controller design for a domestic atmospheric research airship

    , Article Mechanics Based Design of Structures and Machines ; 2020 Amani, S ; Pourtakdoust, S. H ; Pazooki, F ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Airships are inherently sensitive to random atmospheric disturbances that could potentially make their data gathering and observation missions a formidable task. In this context robust closed loop feedback controllers are important. The present study is therefore focused on optimal feedback controller design of an indigenous domestically designed airship (DA) for added robustness against atmospheric disturbances. While the general airship six degrees of freedom (6DoF) governing equations of motion are mathematically nonlinear, one often needs to resort to local linearization methods to benefit from proven linear closed loop controller (CLC) design approaches. In this sense an optimal linear... 

    Global stabilization of uncertain lotka-volterra systems via positive nonlinear state feedback

    , Article IEEE Transactions on Automatic Control ; Volume 65, Issue 12 , 2020 , Pages 5450-5455 Badri, V ; Tavazoei, M. S ; Yazdanpanah, M. J ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This article deals with stabilization of Lotka-Volterra (LV) systems in the presence of interval uncertainty and a physical limitation on the control input, which restricts this input to be strictly positive. Considering the positiveness property of LV systems, a quasi-monomial structure for the state feedback based control input is proposed. Considering this structure, stability of the closed-loop system with no uncertainty is analyzed. This analysis leads to an algebraic inequality, whose satisfaction guarantees stability of the closed-loop system. To extend this result to uncertain LV systems with interval parameter uncertainty, a new approach, by which stability of the positive... 

    Exponential stabilization of flexural sway vibration of gantry crane via boundary control method

    , Article JVC/Journal of Vibration and Control ; Volume 26, Issue 1-2 , 2020 , Pages 36-55 Entessari, F ; Najafi Ardekany, A ; Alasty, A ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    This paper aims to develop a boundary control solution for complicated gantry crane coupled motions. In addition to the large angle sway motion, the crane cable has a flexural transverse vibration. The Hamilton principle has been utilized to derive the governing partial differential equations of motion. The control objectives which are sought include: moving the payload to the desired position; reducing the payload swing with large sway angle; and finally suppressing the cable transverse vibrations in the presence of boundary disturbances simultaneously. These simultaneous boundary control objectives make the problem challenging. The proposed control approach is based on the original...