Loading...
Search for: coatings
0.022 seconds
Total 689 records

    A modified Jarzynski free-energy estimator to eliminate non-conservative forces and its application in nanoparticle-membrane interactions

    , Article Physical Chemistry Chemical Physics ; Volume 24, Issue 6 , 2022 , Pages 3647-3654 ; 14639076 (ISSN) Hosseini, A. N ; Lund, M ; Ejtehadi, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Computational methods to understand interactions in bio-complex systems are however limited to time-scales typically much shorter than in Nature. For example, on the nanoscale level, interactions between nanoparticles (NPs)/molecules/peptides and membranes are central in complex biomolecular processes such as membrane-coated NPs or cellular uptake. This can be remedied by the application of e.g. Jarzynski's equality where thermodynamic properties are extracted from non-equilibrium simulations. Although, the out of equilibrium work leads to non-conservative forces. We here propose a correction Pair Forces method, that removes these forces. Our proposed method is based on the calculation of... 

    A molecular dynamics study of bond strength and interface conditions in the Al / Al 2 O 3 metal-ceramic composites

    , Article Computational Materials Science ; Volume 109 , November , 2015 , Pages 200-208 ; 09270256 (ISSN) Sazgar, A ; Movahhedy, M. R ; Mahnama, M ; Sohrabpour, S ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract High ductility of metals as well as high strength of ceramics has made the metal/ceramic composites an attractive material for many applications requiring high strength to weight ratios. An important issue in using this material is the behavior of the material and its ceramic-metal interface under various loading, especially at high strain rate. To provide a better understanding of the interface conditions, in this work, a molecular dynamics study of the interface behavior in Al/α-Al2O3 composite as the result of tensile and shear loadings is presented. For this purpose, the reactive force field (ReaxFF) potential function is utilized. The effects of... 

    An alternative additive manufacturing-based joining method to make Metal/Polymer hybrid structures

    , Article Journal of Manufacturing Processes ; Volume 45 , 2019 , Pages 217-226 ; 15266125 (ISSN) Ozlati, A ; Movahedi, M ; Tamizi, M ; Tartifzadeh, Z ; Alipour, S ; https://www.sciencedirect.com/science/article/abs/pii/S1526612519302087
    Elsevier Ltd  2019
    Abstract
    Fused Deposition Modeling with Polypropylene filament was employed to make a lap joint between Polypropylene and pre-punched Al-Mg alloy sheets, in the form of bonds between the polymeric substrate and the additive part and mechanical lock between the additive part and aluminum base sheet. Effects of the joint interface area (hole diameter of 5–13 mm) and preheating of the substrates (room temperature, 50 and 90℃) were investigated on the mechanical properties of the joints. Peak load in the tensile-shear and cross-tension tests increased with enhancement of the joint interface area (up to ˜280 N and ˜160 N, respectively). Higher joint strength in the tensile-shear test compared to the... 

    An analytical and experimental study on dampening material effects on the dynamic behavior of free-free aluminum sheets

    , Article Engineering Solid Mechanics ; Volume 9, Issue 2 , 2021 , Pages 111-122 ; 22918744 (ISSN) Khorasani, R ; Hosseini Kordkheili, S. A ; Parviz, H ; Sharif University of Technology
    Growing Science  2021
    Abstract
    This work aims to present an experimentally verified analytical solution to examine damping properties of systems including viscoelastic treatments. Although there are several methods for characterizing the behavior of three-layer damping systems, the RKU method is the most frequently used one. In this paper, this method is modified such a way that to be applied for a five-layer damping system. The achieved analytical relations are then employed to study the effects of a four-layer vibration-absorbing coating on the dynamic behavior of an aluminum sheet with free-free boundary conditions. Since the vibration-damping properties of the coating are unknowns, its loss factor and shear modulus... 

    An aniline-based fiber coating for solid phase microextraction of polycyclic aromatic hydrocarbons from water followed by gas chromatography-mass spectrometry

    , Article Journal of Chromatography A ; Volume 1152, Issue 1-2 , 2007 , Pages 168-174 ; 00219673 (ISSN) Bagheri, H ; Babanezhad, E ; Eshaghi, A ; Sharif University of Technology
    2007
    Abstract
    A fiber coating from polyaniline (PANI) was electrochemically prepared and employed for solid phase microextraction (SPME) of some polycyclic aromatic hydrocarbons (PAHs) from water samples. The PANI film was directly electrodeposited on the platinum wire surface in sulfuric acid solution using cyclic voltammetry (CV) technique. The applicability of this coating was assessed employing a laboratory-made SPME device and gas chromatography with mass spectrometry (GC-MS) for the extraction of some PAHs from the headspace of aqueous samples. Application of wider potential range in CV led to a PANI with more stability against the temperature. The homogeneity and the porous surface structure of the... 

    An approach to relate shot peening finite element simulation to the actual coverage

    , Article Surface and Coatings Technology ; Vol. 243 , 2014 , pp. 39-45 ; ISSN: 02578972 Gangaraj, S. M. H ; Guagliano, M ; Farrahi, G. H ; Sharif University of Technology
    Abstract
    Coverage is one of the most important parameters which is always used in practice to characterize a shot peening process. At the same time however, it is the most missing parameter in the finite element simulations of this process. This study aims to relate shot peening simulation to the actual coverage that is developed during the process. Accordingly, two important models from literature are re-simulated and their capability to predict an actual coverage is assessed. Results of this study illustrate that full coverage situation is not captured by these models. Thereafter, a random finite element simulation along with a step by step examination of the treated surface is adopted in order to... 

    An electrochemical synthesis of reduced graphene oxide/zinc nanocomposite coating through pulse-potential electrodeposition technique and the consequent corrosion resistance

    , Article International Journal of Corrosion ; Volume 2018 , 2018 ; 16879325 (ISSN) Moshgi Asl, S ; Afshar, A ; Yaghoubinezhad, Y ; Sharif University of Technology
    Hindawi Limited  2018
    Abstract
    Pulse-potential coelectrodeposition of reduced graphene oxide/zinc (rGO-Zn) nanocomposite coating is directly controlled upon a steel substrate from a one-pot aqueous mixture containing [GO-/Zn2+]δ+ nanoclusters. GO nanosheets are synthesized by modified Hummer's approach while Zn cations are produced in the solution and deposited on GO nanosheets using anodic dissolution technique. Eventually, nanoclusters are reduced to rGO-Zn film through an electrochemical process. Chemical composition, surface morphology, and corrosion resistance of the thin film are characterized. Results show that the corrosion resistance of rGO-Zn coating is approximately 10 times more than the bare steel. © 2018 S.... 

    An electropolymerized aniline-based fiber coating for solid phase microextraction of phenols from water

    , Article Analytica Chimica Acta ; Volume 532, Issue 1 , 2005 , Pages 89-95 ; 00032670 (ISSN) Bagheri, H ; Mir, A ; Babanezhad, E ; Sharif University of Technology
    2005
    Abstract
    An aniline-based polymer was electrochemically prepared and applied as a new fiber coating for solid phase microextraction (SPME) of some priority phenols from water samples. The polyaniline (PANI) film was directly electrodeposited on the platinum wire surface in sulfuric acid solution using cyclic voltammetry (CV) technique. The efficiency of new coating was investigated using a laboratory-made SPME device and gas chromatography with flame ionization detection for the extraction of some phenols from the headspace of aqueous samples. The scanning electron microscopy (SEM) images showed the homogeneity and the porous surface structure of the film. The results obtained proved the ability of... 

    A new approach for preparation of semi-transparent superhydrophobic coatings by ultrasonic spray hydrolysis of methyltrimethoxysilane

    , Article Progress in Organic Coatings ; Volume 135 , 2019 , Pages 248-254 ; 03009440 (ISSN) Rahemi Ardekani, S ; Sabour Rouh Aghdam, A ; Nazari, M ; Bayat, A ; Saievar Iranizad, E ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A novel nebulizing spray hydrolysis approach was used for preparation of semi-transparent superhydrophobic coatings. Methyltrimethoxysilane was dissolved in water:ethanol mixture and ultrasonically sprayed on different substrates. Superhydrophobic coatings with a contact angle (CA) as high as 164° and a sliding angle below 5° were obtained. FESEM and AFM revealed a hierarchical micro-nano binary structure with nanometric roughness of the coatings. The coated glass substrate exhibited transmittance close to 80%. The prepared coating showed great self-cleaning and water jet repellency behaviors. The superhydrophobicity of the samples was remained after subjecting to ambient conditions for 50... 

    A new approach for simultaneously improved osseointegration and antibacterial activity by electrochemical deposition of graphene nanolayers over titania nanotubes

    , Article Applied Surface Science ; Volume 580 , 2022 ; 01694332 (ISSN) Yahya Rahnamaee, S ; Bagheri, R ; Vossoughi, M ; khafaji, M ; Asadian, E ; Ahmadi Seyedkhani, S ; Samadikuchaksaraei, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Simultaneous enhancement of osseointegration and bacterial infection prohibition through surface modifications is a challenging but promising approach to achieve durable implantation. To that end, we present a multifunctional surface coating composed of graphene nanolayers and hierarchical well-aligned TiO2 nanotubes with a nanoporous top layer (cRTNT). FESEM studies reveal tunable increasing island morphologies of graphene nanolayers (G) on cRTNT by a cyclic voltammetry process. XPS analysis shows that the enhanced interface chemistry is due to TiO2-carbon bonding. The roughness of the sample containing a medium amount of graphene, cRTNT-75%GO, was calculated ∼289 nm, which was 543% higher... 

    A new co-solvent assisted CuSCN deposition approach for better coverage and improvement of the energy conversion efficiency of corresponding mixed halides perovskite solar cells

    , Article Journal of Materials Science: Materials in Electronics ; Volume 30, Issue 12 , 2019 , Pages 11576-11587 ; 09574522 (ISSN) Khorasani, A ; Marandi, M ; Iraji zad, A ; Taghavinia, N ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    In this research, inorganic copper thiocyanate (CuSCN) hole transport layer (HTL) was applied in conventional structure of perovskite solar cells (PSCs). Besides, mixed halides perovskite (Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3) was utilized as the light absorbing layer and deposited on FTO/compact TiO2 substrates through a one-step coating method in ambient condition. The mentioned perovskite is more stable against high temperature, high irradiation and humidity compared to commonly applied MAPbI3 perovskite. Nevertheless, the CuSCN could not be well dissolved in usual dipropyl sulfide solution and should be deposited for several times to achieve suitable thickness, this could reduce the... 

    An FGM coated elastic solid under thermomechanical loading: A two dimensional linear elastic approach

    , Article Surface and Coatings Technology ; Volume 200, Issue 12-13 , 2006 , Pages 4050-4064 ; 02578972 (ISSN) Shodja, H. M ; Ghahremaninejad, A ; Sharif University of Technology
    2006
    Abstract
    A thin coating made of linear elastic functionally graded material (FGM) perfectly bonded to an elastic substrate is considered. This work which is of particular interest to tribological community is devoted to the determination of the thermal and mechanical stresses due to mixed normal and tangential Hertzian surface pressure. The thermomechanical properties of the FGM coating are assumed to vary exponentially through the thickness. Solutions for temperature rise and stresses are obtained by use of Fourier transform technique. The influences of coating thickness, Peclet number and friction coefficient on temperature rise and stresses in the FGM coating are investigated. Comparative studies... 

    Aniline-silica nanocomposite as a novel solid phase microextraction fiber coating

    , Article Journal of Chromatography A ; Volume 1238 , May , 2012 , Pages 22-29 ; 00219673 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    2012
    Abstract
    A new unbreakable solid phase microextraction (SPME) fiber coating based on aniline-silica nanocomposite was electrodeposited on a stainless steel wire. The electropolymerization process was carried out at a constant deposition potential, applied to the corresponding aqueous electrolyte containing aniline and silica nanoparticles. The scanning electron microscopy (SEM) images showed the non-smooth and the porous surface structure of the prepared nanocomposite. The applicability of the new fiber coating was examined by headspace-solid phase microextraction (HS-SPME) of some environmentally important polycyclic aromatic hydrocarbons (PAHs), as model compounds, from aqueous samples.... 

    Anodizing of titanium in NaOH solution and its corrosion resistance in PBS physiologic solution

    , Article Scientia Iranica ; Volume 10, Issue 3 , 2003 , Pages 361-366 ; 10263098 (ISSN) Afshar, A ; Vaezi, M. R ; Sharif University of Technology
    Sharif University of Technology  2003
    Abstract
    Titanium is a highly reactive metal with an inclination to compose with oxygen. In order to increase its corrosion resistance and application, therefore, a thin layer of titanium oxide is produced on the surface by chemical and electrochemical methods. In the present research, titanium has been anodized in 20 M of NaOH solution under potentiostatic conditions at constant voltages of 25 and 35 V. The microstructure of the anodic layers has been studied by the use of a Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD). The results indicated that the structure of the anodic layers is amorphous with low porosity and that thickness increases with an increase in anodizing voltage. The... 

    A non-catalytic vapor growth regime for organohalide perovskite nanowires using anodic aluminum oxide templates

    , Article Nanoscale ; Volume 9, Issue 18 , 2017 , Pages 5828-5834 ; 20403364 (ISSN) Tavakoli, M. M ; Waleed, A ; Gu, L ; Zhang, D ; Tavakoli, R ; Lei, B ; Su, W ; Fang, F ; Fan, Z ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    In this work, a novel and facile synthesis process to fabricate single crystalline organometal halide perovskite nanowires has been successfully developed. Nanowires were grown in a high density ordered array from metal nanoclusters inside anodic aluminum oxide templates using a non-catalytic chemical vapor deposition method. Specifically, perovskite NWs were grown as a result of the reaction between methylammonium iodide (MAI) and the Pb/Sn (Pb or Sn) metal in anodic aluminum oxide templates under optimal conditions. The characterization results show that there is a reaction zone at the interface between the perovskite material and metal, at the bottom of the anodic aluminum oxide... 

    A novel and cost-effective method for fabrication of a durable superhydrophobic aluminum surface with self-cleaning properties

    , Article Nanotechnology ; Volume 31, Issue 46 , 2020 Afzali, N ; Taghvaei, E ; Moosavi, A ; Sharif University of Technology
    IOP Publishing Ltd  2020
    Abstract
    A hierarchical superhydrophobic surface is prepared via a two-step boiling water immersion process and anodization of the treated aluminum substrate in a novel hydrophobic electrolyte of aluminum nitrate and stearic acid mixture at room temperature. The immersion time in boiling water had a significant influence on the morphology and durability of the sample. A pseudoboehmite coating is created on the aluminum surface during the boiling process, as revealed by the field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FTIR) spectrophotometer results. The energy-dispersive x-ray spectroscopy analysis confirmed the formation of hydrophobic coating surface after... 

    A novel low-temperature growth of uniform CuInS2 thin films and their application in selenization/sulfurization-free CuInS2 solar cells

    , Article Materials Today Communications ; Volume 26 , 2021 ; 23524928 (ISSN) Dehghani, M ; Parvazian, E ; Alamgir Tehrani, N ; Taghavinia, N ; Samadpour, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In terms of manufacturability, there is a high tendency to deposit light-absorbing CuInS2 films by solution processing methods like ink-based depositions. In particular, for nanoparticle inks, the synthesis of highly dispersed and stable inks, with uniformity in the deposition process, is a serious challenge. Here, we demonstrate a novel two-step low-temperature CuInS2 film deposition method in which the In2S3 is deposited first. It then partially is converted into CuInS2 through the infiltration of Cu+ ions in the In2S3 layer in a dip-coating process. The resulting films are highly uniform, with diffraction peaks indicating the formation of pure CuInS2 phase. The proper stoichiometry of... 

    A novel superhydrophilic/superoleophobic nanocomposite PDMS-NH2/PFONa-SiO2 coated-mesh for the highly efficient and durable separation of oil and water

    , Article Surface and Coatings Technology ; Volume 394 , 2020 Amirpoor, S ; Siavash Moakhar, R ; Dolati, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A surface to separate oil–water mixtures is a global concern and highly needed particularly in oil industries. The present study was conducted to create a novel superhydrophilic/superoleophobic nanocomposite coating on the stainless-steel mesh for the aim of oil/water separation. Different hydrophilic resins along with PFOA as oleophobic agent with 15 flours in its chemical structure and various oxide nanoparticles containing SiO2 and TiO2 at different concentrations were studied to achieve superhydrophilic/superoleophobic surface. The fabricated nanocomposites were fully characterized via field-emission scanning microscopy (FESEM), atomic force microscopy (AFM) and Fourier-transform... 

    Antibiotic-loaded chitosan–Laponite films for local drug delivery by titanium implants: cell proliferation and drug release studies

    , Article Journal of Materials Science: Materials in Medicine ; Volume 26, Issue 12 , December , 2015 ; 09574530 (ISSN) Ordikhani, F ; Dehghani, M ; Simchi, A ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Abstract: In this study, chitosan–Laponite nanocomposite coatings with bone regenerative potential and controlled drug-release capacity are prepared by electrophoretic deposition technique. The controlled release of a glycopeptide drug, i.e. vancomycin, is attained by the intercalation of the polymer and drug macromolecules into silicate galleries. Fourier-transform infrared spectrometry reveals electrostatic interactions between the charged structure of clay and the amine and hydroxyl groups of chitosan and vancomycin, leading to a complex positively-charged system with high electrophoretic mobility. By applying electric field the charged particles are deposited on the surface of titanium... 

    Anticorrosion properties of smart coating based on polyaniline nanoparticles/epoxy-ester system

    , Article Progress in Organic Coatings ; Volume 75, Issue 4 , 2012 , Pages 502-508 ; 03009440 (ISSN) Arefinia, R ; Shojaei, A ; Shariatpanahi, H ; Neshati, J ; Sharif University of Technology
    2012
    Abstract
    In this study, the anticorrosive effect of dodecylbenzenesulfonicacid-doped polyaniline nanoparticles [n-PANI (DBSA)] as a conductive polymer was investigated using electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) techniques. Initially, the n-PANI (DBSA) were successfully synthesized via inverse microemulsion polymerization leading to the spherical nanoparticles with an average diameter less than 30 nm. Two coating systems including 1 wt% n-PANI(DBSA) blended epoxy ester (n-PANI(DBSA)/EPE) and neat epoxy ester (EPE) were coated on the carbon steal substrate. The anticorrosion performance of the prepared coatings was studied using EIS measurement in 3.5%...