Loading...
Search for: cobalt
0.012 seconds
Total 292 records

    Fabrication and Investigation of Supercapacitors Based on Graphene Nanocomposites

    , Ph.D. Dissertation Sharif University of Technology Jokar, Effat (Author) ; Iraji Zad, Azam (Supervisor) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    Development of renewable energy production from sun and wind and the development of hybrid electric vehicles seem to be integral components in modern societies in order to overcome the environmental pollution and reduce the use of fossil fuel sources. In such devices energy storage plays an important role and supercapacitor is one the important energy storage devices. Structure of supercapacitor electrodes has considerable effect on supercapacitor performance. Graphene as a 2D carbon structure can improve electrochemical properties of electrodes. Here three different hybrid structure of graphene have been realized. The high capacitance and cyclic stability of graphene nanosheets decorated... 

    Comparative Study of Anti-oxidant Property of Fullerene C60 and its Amine Derivatives: the Effect of Transition Metal Complexes

    , M.Sc. Thesis Sharif University of Technology Tangeysh, Behzad (Author) ; Ghanbari, Bahram (Supervisor)
    Abstract
    Since the discovery of fullerene C60, its chemical and physical properties have been a hot topic in the field of research. For the past two decades remarkable developments achieved in the field of fullerenes chemistry. The aim of this study is comparative study of antioxidant property of fullerene C60 and its amine derivatives and the effect of transition metal complexes. At the outset the anti-oxidative property of fullerene C60 and its amine derivatives explored and it was found that by increasing the chain length of amines, the anti-oxidative property of aminofullerenes increased respectively. In next step the effect of CoSALEN complex on anti-oxidative property of fullerene was... 

    Molecular Dynamics Study of Tungsten and Iron Addition on the Glass Formability of Cobalt-based Electrodeposited Coatings

    , M.Sc. Thesis Sharif University of Technology Bayati, Mohammad Baher (Author) ; Tavakoli, Rouhollah (Supervisor)
    Abstract
    Recent research suggests that the electrochemical deposition of cobalt-based binary alloys, such as cobalt-tungsten and cobalt-iron, can lead to the formation of amorphous structures in the coatings. Theoretical studies suggest that these structures are equivalent to structures created by the melt cooling of the alloy at speeds of about 〖10〗^10 Kelvin per second. The formation of a glass phase can significantly increase the abrasion resistance and corrosion resistance of these coatings. Empirical studies show that the ability of the glass to become glassy, or more precisely, the transition from crystalline to amorphous, is largely a function of the chemical composition. Simulation of... 

    Investigation and Study of Microstructure, Dielectric and Non-ohmic Properties of tin and Cobalt Oxide Systems Co-Doped with Electron Donor and Acceptor Elements

    , M.Sc. Thesis Sharif University of Technology Behdarvandan, Nazanin (Author) ; Nemati, Ali (Supervisor) ; Maleki Shahraki, Mohammad (Supervisor)
    Abstract
    In recent years, there are continuous researches on replacing new dielectrics with suitable dielectric properties (including high dielectric coefficient, low loss factor, high breakdown voltage, and high nonlinear coefficient simultaneously). One of these new materials is co-doped titanium oxide with donor and acceptor of electron, which in spite of having high dielectric coefficient and low loss factor. it has low breakdown voltage and researches on improving the disadvantages of this dielectric are ongoing. Due to the structural similarities between tin oxide and titanium oxide, the tin oxide can be an interesting system for studying and improving disadvantages in this field. In this study... 

    , M.Sc. Thesis Sharif University of Technology Baradaran Mohajeri, Saha (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Electrodeposition of composite coatings containing nano particles is very important because this technique is simple and economic. In this research, in order to produce a coating with high hardness and wear resistance, Ni-Co/WC nano composite was co-deposited. Watt’s based bath containing cobalt and tungsten carbide was used and parameters such as preparation of solution, concentration of ingredients and current density were controlled and adjusted. Surface morphology, microstructure and mechanical properties of coatings were studied by SEM and AFM microscopes. Mechanism of electrodeposition was investigated by cyclic voltametry, cronoamperometry and cronopotentiometry techniques and... 

    Synthesis and Evaluation of Nanostructured ZIF-67-Based Electrocatalysts for Oxygen Evolution Reaction

    , M.Sc. Thesis Sharif University of Technology Bairami Sorkhehrizi, Zahra (Author) ; Khorasheh, Farhad (Supervisor) ; Ghotbi, Sirus (Supervisor) ; Larimi, Afsaneh Sadat (Supervisor) ; Esmaeilpour, Mohsen (Co-Supervisor)
    Abstract
    Today, due to the decreasing of fossil fuel reserves and the need to use clean fuels, hydrogen is a suitable alternative, and hydrogen production has received considerable attention. One of the best methods of hydrogen production is water splitting. Overall water splitting can be divided into two half reactions including the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), which selecting the appropriate electrocatalyst for these half reactions plays an important role. The four-electron transfer process in OER leads to slow kinetics of the reaction and a large overpotential. The noble metal-based oxides, including IrO2 and RuO2, are known as outstanding OER... 

    Studying Supercapacitive Performance of Cobalt-based Hierarchical Nanostructures

    , M.Sc. Thesis Sharif University of Technology Afsahi, Nikan (Author) ; Naseri, Naimeh (Supervisor)
    Abstract
    One of the pillars of reaching a steady development is to utilize sustainable energies. In order to make use of these modern means of energy, appropriate energy storage devices are inevitable. One of the families of these devices is the supercapacitors. Moving toward the 4th industrial revolution, we are encountering modern technologies such as internet of things and wearable electronics. Therefore, designing and fabricating microsupercapacitors is of paramount importance in order to reduce the weight and size of these devices. Cobalt and nickel are considered as two important elements to be used in synthesizing supercapacitive materials and composites, because of their good electrochemical... 

    Regeneration of Cobalt from Catalyst Deactivated in Fischer-Tropsch Synthesis

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Ali Akbar (Author) ; Kazemeini, Mohammad (Supervisor) ; Rohani, Ali Asghar (Supervisor)
    Abstract
    In this work hydrometallurgical route for processing spent commercial catalysts (Co/Al2O3) are investigated for leaching the Cobalt component. The used catalysts were initially pre-oxidized at 500 °C and 5 h in order to eliminate coke and other volatile species present. Pre-oxidized catalysts were dissolved in solvents such as H2SO4, HNO3, HCl and H2O at 80-90 °C, and the remaining residues separated from the solution. These experiments were performed at different concentrations, presence and absence H2O2 solution. Also effect of reflux on leaching process investigated. The result show the yield of the pre-oxidized catalysts extracted with highly concentration of extractant is higher than... 

    The Effect of Cobalt on Thermal Expansion and Metallurgical Properties of LM13 Alloy

    , M.Sc. Thesis Sharif University of Technology Ejlali, Saeed (Author) ; Varahram, Naser (Supervisor)
    Abstract
    LM13 Aluminum alloys contain Silicon, Copper, magnesium and Nickel. This alloys have been widely used in automobile pistons. For this application thermal expansion coefficient is one important characteristics other than mechanical properties. In this project replacing Cobalt with Nickel to improve alloy thermal and mechanical properties in piston applications by different cobalt contents. Cobalt contents is 0, 0.15, 0.55 and 0.77 Wt%. Because of oxidation magnesium content decrease into 0.98, 0.74, 0.61 and 0.48 Wt%. Thermal expansion coefficient and UTS first increase and after 0.55 Cobalt Wt% show decrease But yield strength and hardness increase as cobalt content increase. Microscopic... 

    Application of Transition Metal Spinels in Carbon-Carbon Bond Formation in Organic Reactions

    , M.Sc. Thesis Sharif University of Technology Ahangarpour, Marzieh (Author) ; Matloubi Moghaddam, Firouz (Supervisor)
    Abstract
    The ability of Ferro spinels to catalyze the reactions, along with their ability to become easily separated, has attracted many attentions. These Ferro spinels are synthesized in an efficient way and are used as a catalyst for carbon-carbon bond formation. Nanoparticles of Spinel ferrites, for instance three-metal ferrites, have unique characteristics and have very interesting and important applications in synthetic organic chemistry. In the first section of this thesis, synthesis and analysis of copper cobalt ferrite is considered. In the second section, several organic chemical reactions are investigated to evaluate the catalytic activity of these nanoparticles. Finally, the catalytic role... 

    Tunable microwave absorption features in bi-layer absorber based on mesoporous CuS micro-particle with 3D hierarchical structure and nanosphere like NiCo2O4

    , Article Ceramics International ; Volume 48, Issue 7 , 2022 , Pages 9146-9156 ; 02728842 (ISSN) Zhang, Y ; Dai, F ; Mouldi, A ; Bouallegue, B ; Akhtar, M. N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    There has been a growing demand for materials with superior absorption capabilities, such as strong absorbing capacity, thin thickness, and light weight, to solve challenges related to EM radiation pollution. While the majority of the research is focused on optimizing material compositions, component microstructure and absorber structure are also critical factors for improving microwave absorption performance. In this research, we show how the microstructure of components and absorber design may increase dissipation features. Solvothermal and hydrothermal methods were utilized for synthesizing mesoporous CuS micro-particles with a 3D hierarchical structure as a dielectric component and... 

    Determining of the optimized dimensions of the Marinelli beaker containing source with inhomogeneous emission rate by using genetic algorithm coupled with MCNP and determining distribution type by neural networks

    , Article Applied Radiation and Isotopes ; Volume 157 , 2020 Zamzamian, S. M ; Hosseini, S. A ; Feghhi, S. A ; Samadfam, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In order to determine the activity of C137s in soil resulting from nuclear accidents or fallouts, the best choice is to use HPGe detectors due to their best energy resolutions. In this regard, in order to enhance the detection efficiency, the Marinelli beakers have been used to increase the radiation interaction with the sensitive volume of the detector. In previous works, to optimize the dimension of Marinelli beakers, the assumption was that the emission rate of the source is homogeneous in beaker volume. In the present study, to investigate the effect of the inhomogeneous emission rate of the source on the optimum dimensions of the beaker, in a simple case, the beaker was divided into two... 

    Studies on the catalyst preparation methods and kinetic behavior of supported cobalt catalysts for the complete oxidation of cyclohexane

    , Article Reaction Kinetics, Mechanisms and Catalysis ; Volume 114, Issue 2 , Jan , 2015 , Pages 611-628 ; 18785190 (ISSN) Zabihi, M ; Khorasheh, F ; Shayegan, J ; Sharif University of Technology
    Springer Netherlands  2015
    Abstract
    Low cost dispersed supported cobalt oxide nanocatalysts on activated carbon (AC) were prepared by two different methods: (1) combined impregnation and deposition–precipitation (IMP-DP) and (2) heterogeneous deposition–precipitation (HDP). XRD, TEM, FESEM, BET and Boehm techniques were used for the characterization of the support and the catalysts. Characterization analyses indicated the negative effect of the wet impregnation method on the IMP-DP technique for the preparation of catalysts for the total oxidation of cyclohexane in air. The catalysts prepared by HDP and IMP-DP methods were found to have significant differences in oxidation activity, morphology, particle size, and shape of... 

    Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air

    , Article RSC Advances ; Volume 5, Issue 7 , Dec , 2015 , Pages 5107-5122 ; 20462069 (ISSN) Zabihi, M ; Khorasheh, F ; Shayegan, J ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Copper and cobalt oxides supported on almond shell derived activated carbon (AC) with different loadings were synthesized by sequential and co-deposition-precipitation methods leading to Cu(shell)/Co(core)/AC, Co(shell)/Cu(core)/AC and Cu-Co(mixed)/AC catalysts that were subsequently used for catalytic oxidation of gaseous mixtures of toluene and cyclohexane in air in a tubular flow reactor. The catalysts and the support were characterized by Boehm test, Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy... 

    Hot deformation behavior of Fe-29Ni-17Co alloy

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 23, Issue 11 , 2013 , Pages 3271-3279 ; 10036326 (ISSN) Yazdani, M ; Abbasi, S. M ; Taheri, A. K ; Momeni, A ; Sharif University of Technology
    2013
    Abstract
    Hot compression tests were carried out on a Fe-29Ni-17Co alloy in the temperature range of 900 °C to 1200 °C and at strain rates of 0.001-1 s-1. Dynamic recrystallization was found responsible for flow softening during hot compression. The flow behavior was successfully analyzed by the hyperbolic sine equation and the corresponding material constants A, n and α were determined. The value of apparent activation energy was determined as 423 kJ/mol. The peak and steady state strains showed simple power-law dependence on the Zener-Hollomon parameter. The dynamic recrystallization kinetics was analyzed using Avrami equation and the corresponding exponent was determined to be about 2.7. This... 

    Hot ductility of a Fe-Ni-Co alloy in cast and wrought conditions

    , Article Materials and Design ; Volume 32, Issue 5 , 2011 , Pages 2956-2962 ; 02641275 (ISSN) Yazdani, M ; Abbasi, S. M ; Momeni, A ; Karimi Taheri, A ; Sharif University of Technology
    2011
    Abstract
    The hot ductility of Fe-29Ni-17Co alloy was studied in both cast and wrought conditions by hot tensile tests over temperature range of 900-1250°C and at strain rates of 0.001-1s-1. Over the studied temperature range, the wrought alloy represented higher elongation and reduction in area as compared to the cast alloy. Dynamic recrystallization was found responsible for the higher hot ductility of the wrought alloy and the improvement of hot ductility of the cast alloy at high temperatures. At temperature range of 1000-1150°C the wrought alloy exhibited a hot ductility drop while a similar trough was not observed in case of the cast alloy. It was also found that at temperatures of 1150-1250°C... 

    A study of Acidithiobacillus Ferrooxidans DSMZ 583 Adaptation to Heavy Metals

    , Article Iranian Journal of Biotechnology ; Volume 9, Issue 2 , 2011 , Pages 133-144 ; 17283043 (ISSN) Yaghmaei, S ; Ghobadi, Z ; Sharif University of Technology
    2011
    Abstract
    In this study the ability of Acidithiobacillus ferrooxi-dans, with regard to the biorecovery of heavy metals in shake flask has been investigated. Adaptation experiments with the single metal ions Ni, Co, V, Mo, W and a mixture of the first four metal ions in the medium was developed through serial sub-culturing. Adaptation showed that A. ferrooxidans could tolerate up to 2.3 g/l Ni, 1.4 g/l Co, 1.4 g/l V, 0.045 g/l Mo and 0.005 g/l W, singly. In the presence of multi-metals considering a mixture of Ni-Co-V-Mo, the bacteria was able to tolerate up to 1.5 g/l Ni, 0.8 g/l Co, 0.8 g/l V and 0.05 g/l Mo in steps of 50-100 mg/l for Ni, Co and V, while for Mo and W with increments in concentration... 

    Probabilistic assessment of creep-fatigue crack propagation in austenitic stainless steel cracked plates

    , Article Engineering Fracture Mechanics ; Volume 200 , 2018 , Pages 50-63 ; 00137944 (ISSN) Vojdani, A ; Farrahi, G. H ; Mehmanparast, A ; Wang, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This study investigates the effects of uncertainties in the prediction of creep-fatigue crack propagation in 316L(N) austenitic stainless steel plates containing a semi-elliptical surface defect. Different parameters in geometry, material behavior and test condition are considered as random variables in probabilistic assessments. Monte-Carlo sampling method is employed to estimate the probability distribution of desired outputs such as propagated crack sizes, stress intensity factors and creep rupture life. It is shown that, the standard deviation of the predicted crack sizes in both through-wall direction and along the surface of the plate will be increased by increasing the time (hence the... 

    On the functionality of the polypyrrole nanostructures for surface modification of Co-free Li-rich layered oxide cathode applied in lithium-ion batteries

    , Article Journal of Electroanalytical Chemistry ; Volume 914 , 2022 ; 15726657 (ISSN) Vahdatkhah, P ; Khatiboleslam Sadrnezhaad, S ; Voznyy, O ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Co-free Li-rich manganese nickel oxide (LMNO) materials are emerging as an up-and-coming candidate for high-energy–density cathodes. However, they suffer from severe cycling capacity fading and poor performance rates. Herein, the surface functionalization of an LMNO cathode is designed by polypyrrole (PPy) nanostructure coating. We found that PPy nanoparticles@LMNO cathode exhibits high-capacity retention and enhanced rate capabilities, delivering a discharge capacity as high as 191 mAh g−1, with capacity retention of 96%, after ∼ 200 cycles at a current density of 20 mA g−1. The results indicate that the intercalation and doping pseudocapacitance can be varied depending on the synthesis... 

    Discrimination between Alzheimer's disease and control group in MR-images based on texture analysis using artificial neural network

    , Article ICBPE 2006 - 2006 International Conference on Biomedical and Pharmaceutical Engineering, Singapore, 11 December 2006 through 14 December 2006 ; 2006 , Pages 79-83 ; 8190426249 (ISBN); 9788190426244 (ISBN) Torabi, M ; Ardekani, R. D ; Fatemizadeh, E ; Sharif University of Technology
    2006
    Abstract
    In this study, we have proposed a novel method investigates MR-Images for normal and abnormal brains which effected by Alzheimer's Disease (AD) to extract 336 number of different features based on texture analysis. Before applying this algorithm, we have to use a registration method because of variety in size of normal and abnormal images. Consequently, the output of Texture Analysis System (TAS) is a vector containing 336 elements that are features extracted from texture. This vector is considered as the input of the Artificial Neural Network (ANN) which is feed-forward one. The features extracted from the Gray-level Co-occurrence Matrix (GLCM) have been interpreted and compared with normal...