Loading...
Search for: cobalt
0.017 seconds
Total 292 records

    Property Investigation of Poly (Ethylene Co-vinyl Acetate)/Poly (l-Lactic Acid)/Organo Clay Nanocomposites

    , Article Journal of Polymers and the Environment ; Volume 27, Issue 12 , 2019 , Pages 2886-2894 ; 15662543 (ISSN) Torabi, H ; Ramazani SaadatAbadi, A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    In this study, EVAc/PLA/organo clay nanocomposites were prepared via solution mixing method. The SEM images were used to investigate the morphology of nanocomposites revealing no phase separation or agglomeration of disperse phase in EVAc/PLA blends and nanocomposites. SAXS spectra confirmed the intercalated morphology of nanocomposites. Soil burial test were carried out and the rate of degradation of the samples were measured indirectly. Oxygen gas permeability of EVAc was slightly decreased by adding PLA to the matrix, when small loads of clay caused dramatic improvement in barrier properties. Melt rheological frequency sweep test illustrated the compatibility of EVAc with low contents of... 

    Effects of lithium excess and Ni content on the electrochemical performance of Li1+x (Ni0.45-xMn0.4Co0.15) O2 lithium-ion cathode materials in stoichiometric state

    , Article Materials Research Express ; Volume 6, Issue 8 , 2019 ; 20531591 (ISSN) Tolouei, A ; Kaflou, A ; Sadrnezaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In Li-ion batteries, application of active materials can enhance the kinetics of the charge-discharge process, reduce the costs and improve the safety of the system. In this work, the effect of nickel content and lithium excess in Li1+x (Ni0.4-xMn0.5Co0.1) O2 compounds on the electrochemical performance of the lithium-ion battery cathode have been studies. For this purpose, three compounds of NMC in the stoichiometric state were synthesized via co-precipitation as the cathode active material. XRF and EDS analyses indicate that precursors and oxide compounds are well synthesized. The final compound of synthesized cathodes was obtained by ICP analysis. XRD results also suggest that the... 

    Synthesis and characterization of ultrasound assisted "graphene oxide-magnetite" hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions

    , Article Applied Surface Science ; Volume 353 , 2015 , Pages 350-362 ; 01694332 (ISSN) Tayyebi, A ; Outokesh, M ; Moradi, S ; Doram, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Magnetite nanoparticles with a size distribution of 15-21 nm were synthesized and decorated onto surface of graphene oxide by ultrasound assisted precipitation. Size and size distribution of the obtained M-GO hybrid were appreciably finer than the hybrids prepared by stirring method. M-GO is a superparamagnetic material with saturation magnetization of 31 emu g-1. The Langevin equation was successfully applied for estimation of size of Fe3O4 nanoparticles in M-GO hybrid, with maximum error of 17.5%. The study put forward a formation mechanism for M-GO, based on instrumental analyses. Adsorption isotherms of Sr2+ and Co2+ ions, which were fitted by Langmuir monolayer... 

    Wettability and rheological behavior of low Ag lead-free SAC/graphene and cobalt-graphene nanocomposite solder paste

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 53, Issue 8 , 2022 , Pages 2811-2822 ; 10735623 (ISSN) Tamizi, M ; Movahedi, M ; Kokabi, A. H ; Miyashita, Y ; Azghandi Rad, S ; Sharif University of Technology
    Springer  2022
    Abstract
    The impacts of dopant nanoparticles, graphene nanosheets (GNSs) and cobalt decorated-graphene nanosheets (CoGNSs), were studied in relation to the wettability and rheological behavior in low-Ag lead-free SAC0307 (Sn–0.3Ag–0.7Cu) solder paste. The solidification range of the solders was evaluated using differential scanning calorimetry. Phase identification in the solder bulk and interface of the solder and copper substrate was carried out by X-ray diffraction and energy-dispersive X-ray spectroscopy. Spreading properties and reactive wetting behavior along with the rheological properties of the solders were also studied. Results showed that the addition of both nanoparticles did not... 

    Trimetallic Co-Ni-Mn metal-organic framework as an efficient electrocatalyst for alkaline oxygen evolution reaction

    , Article Journal of Electroanalytical Chemistry ; Volume 922 , 2022 ; 15726657 (ISSN) Taherinia, D ; Hatami, H ; Mirzaee Valadi, F ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Designing efficient and inexpensive catalysts toward the oxygen evolution reaction (OER) is vital for achieving sustainable and green hydrogen fuel production through water electrolysis. Herein, we have synthesized several bi- and trimetallic metal–organic frameworks (MOFs) composed of Co, Ni, and Mn metals and benzene-1,3,5-tricarboxylic acid linker. The MOFs were prepared via a simple hydrothermal method, and their electrocatalytic performances in alkaline OER were investigated. A battery of analytical techniques was employed to characterize the as-synthesized materials, including field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM),... 

    Preparation and characterization of visible light sensitive nano titanium dioxide photocatalyst

    , Article Scientia Iranica ; Volume 19, Issue 6 , December , 2012 , Pages 1626-1631 ; 10263098 (ISSN) Tabaei, H. S. M ; Kazemeini, M ; Fattahi, M ; Sharif University of Technology
    2012
    Abstract
    Dye sensitizers loaded on TiO2 decrease the electron excitation energy, thereby improving the photocatalytic performance by causing an increase in sensitivity under visible light irradiation. Three dye sensitizer precursors, Mordant Orange 1, N3 (red dye) and Cobalt (II) Phthalocyanine Tetrasulfonate (CoPcTs), were utilized to load the photocatalyst. The rate of the electron trapping process on platinum is clearly compatible with the migration rate of boundary electrons. Consequently, the migration of boundary electrons from the conduction band towards electron acceptors is increased by loading platinum onto the titanium dioxide. In this research, TiO2 was synthesized from a titanium... 

    Synthesis of Ni-Co-CNT nanocomposite and evaluation of its photocatalytic dye (Reactive red 120) degradation ability using response surface methodology

    , Article Desalination and Water Treatment ; Volume 216 , 2021 , Pages 389-400 ; 19443994 (ISSN) Shokrgozar, A ; Seifpanahi Shabani, K ; Mahmoodi, B ; Mahmoodi, N. M ; Khorasheh, F ; Baghalha, M ; Sharif University of Technology
    Desalination Publications  2021
    Abstract
    Herein, NiO and Co2 O3, NiCo2 O4, and NiCo2 O4 /multi-walled carbon nanotubes nanocomposite were synthesized by the hydrothermal method and characterized by scanning electron micros-copy, energy dispersive spectroscopy, and X-ray diffraction. The photocatalytic activity of the synthesized materials was evaluated by Reactive Red 120 dye degradation. The photocatalytic activity of NiO and Co3 O4 was enhanced not only by the formation of NiCo2 O4, but also by its interaction with the functionalized multiwall carbon nanotubes support. The response surface methodology (RSM) was used to obtain the optimum parameters, including catalyst dosage, initial dye concen-tration, and pH on the dye... 

    Nanocrystallization kinetics and magnetic properties of the melt spun amorphous (Fe0.5Co0.5)77Si11B 9Cu0.6Nb2.4 alloy

    , Article Thermochimica Acta ; Vol. 575, issue , 2014 , p. 64-69 Shivaee, H. A ; Samadi, M ; Alihosseini, H ; Madaah Hosseini, H. R ; Sharif University of Technology
    Abstract
    Kinetics of crystallization in an amorphous (Fe0.5Co 0.5)77Si11B9Cu0.6Nb 2.4 (at.%) alloy was investigated using differential scanning calorimetry (DSC). Transformed fraction as a function of temperature was obtained by accurate DSC measurement and the experimental data analyzed with Vyazovkin model-free kinetic method. Reconstructed form of the experimental kinetics model, g(α), clearly showed the crystallization mechanism do not belongs to a single model but almost follows the Avrami-Erofe'ev. Magnetic coercivity and hysteresis loss values of the annealed samples at 823 K were 7.5 A m-1 and 1.2 J m-3, compared to 17.1 A m-1 and 37.1 J m-3 for as spun samples. Magnetic measurements show the... 

    High-performance enzyme-free glucose sensor with Co-Cu nanorod arrays on Si substrates

    , Article Recent Patents on Biotechnology ; Volume 12, Issue 2 , 2018 , Pages 126-133 ; 18722083 (ISSN) Shirinzadeh, H ; Yazdanpanah, A ; Karponis, D ; Aghabarari, B ; Tahmasbi, M ; Seifalian, A ; Mozafari, M ; Sharif University of Technology
    Bentham Science Publishers B.V  2018
    Abstract
    Background: Glucose sensors have been extensively researched in patent studies and manufactured a tool for clinical diabetes diagnosis. Although some kinds of electrochemical enzymatic glucose sensors have been commercially successful, there is still room for improvement, in selectivity and reliability of these sensors. Because of the intrinsic disadvantages of enzymes, such as high fabrication cost and poor stability, non-enzymatic glucose sensors have recently been promoted as next generation diagnostic tool due to their relatively low cost, high stability, prompt response, and accuracy. Objective: In this research, a novel free standing and binder free non-enzymatic electrochemical sensor... 

    ICoSim-FMS: An intelligent co-simulator for the adaptive control of complex flexible manufacturing systems

    , Article Simulation Modelling Practice and Theory ; Volume 19, Issue 7 , August , 2011 , Pages 1668-1688 ; 1569190X (ISSN) Shirazi, B ; Mahdavi, I ; Mahdavi Amiri, N ; Sharif University of Technology
    2011
    Abstract
    We describe an intelligent co-simulator for real time production control of a complex flexible manufacturing system (CFMS) having machine and tool flexibility. The manufacturing processes associated with the CFMS are complicated with each operation being possibly done by several machining centers. The co-simulator design approach is built upon the theory of dynamic meta-model based supervisory control with the cooperation of its own embedded intelligent blocks. The system is implemented by coupling of the centralized simulation controller (CSC) and real-time simulator for enforcing dynamic strategies of shop floor control. The posteriori adaptive co-simulator is equipped with a concurrent... 

    Work hardening of Duratherm 600 cobalt superalloy using repetitive corrugation and straightening process

    , Article Russian Journal of Non-Ferrous Metals ; Volume 51, Issue 1 , February , 2010 , Pages 59-61 ; 10678212 (ISSN) Sheikh, H ; Paimozd, E ; Hashemi, S. M ; Sharif University of Technology
    2010
    Abstract
    In this paper, the effect of repetitive corrugation and straightening (RCS) process on hardness of Duratherm 600 superalloy has been investigated. To do so, the RCS was carried out until 25 cycles using multiple teeth corrugative setup that the rotation of sample with 90° between cycles was utilized. The results show that the increasing of cycle number enhances the value of hardness. Also, the microstructures of samples are an evidence of slipbands formation during RCS showing the applied strain on the material. As a result, the increasing of hardness can be attributed to formation of subgrains, LAGBs and hcp martensitic plates at large strains  

    Effect of operation conditions on the catalytic performance of the Co/Mn/TiO2 catalyst for conversion of synthesis gas to light olefins

    , Article Scientia Iranica ; Volume 17, Issue 2 C , November , 2010 , Pages 168-176 ; 10263098 (ISSN) Shayegh, F ; Ghotbi, C ; Bozorgmehry Boozarjomehry, R ; Rashtchian, D ; Sharif University of Technology
    Abstract
    The effect of operation variables, such as the H2/CO molar feed ratio, gas hourly space velocity (GHSV), temperature, and pressure, on the catalytic performance of the Co/Mn/TiO2 catalyst prepared at the Research Institute of the Petroleum Industry (RIPI) was investigated, and optimum reactor conditions were obtained to produce the maximum amount of light olefins. The catalyst was prepared by co-precipitation of Co and Mn phases in the presence of commercial TiO2 with maximum selectivity for ethylene and propylene production. It was found that the [H2]/[CO]=2/1, space velocity (GHSV) of 1800 h-1, 280°C temperature and 4 bar pressure were optimum operating conditions for the modified catalyst... 

    Morphological dependence of light backscattering from metallic back reflector films: Application in dye-sensitized solar cells

    , Article Physica Status Solidi (A) Applications and Materials Science ; Volume 212, Issue 4 , January , 2015 , Pages 785-790 ; 18626300 (ISSN) Sharifi, N ; Ghazyani, N ; Taghavinia, N ; Sharif University of Technology
    Wiley-VCH Verlag  2015
    Abstract
    Conventionally, a film of TiO2 particles of 300 nm size is employed in Dye-sensitized solar cells (DSCs) as the back reflector film to enhance the light harvesting. Perfect reflectance of silver in visible and near infrared motivates to investigate its potential as the material for the light back reflector film in DSCs. In this study, light back reflector films consisting of 300 nm-sized silver particles, as well as vacuum evaporated silver flat film, were fabricated and compared to 300 nm-sized rutile-type TiO2 particulate reflector film to study their optical aspects. Conventional TiO2 rutile-type particulate film demonstrates slightly lower performance... 

    Corrosion behaviour of Ni-Co alloy coatings at Kish Island (marine) atmosphere

    , Article Bulletin of Materials Science ; Vol. 37, issue. 3 , May , 2014 , p. 713-719 Sharifi, K ; Ghorbani, M ; Sharif University of Technology
    Abstract
    In this study, the corrosion behaviour of Ni-Co alloys with low Co content, electroplated on steel substrate in sulphate bath, was investigated. The morphology of coatings was studied by optical and SEM microscopy. The corrosion products were analyzed using EDX. The results showed that Ni-1%Co coatings had a better corrosion resistance 0.30, 0.92 and 3.75 mpy for atmospheric, salt spray and polarization tests, respectively. These are 0.41, 1.20 and 5.40 mpy for pure nickel coatings that indicate the least corrosion resistance. Surface analysis revealed the presence of oxides, sulphides and chlorides in corrosion products  

    Mesoporous nanostructures of NiCo-LDH/ZnCo2O4 as an efficient electrocatalyst for oxygen evolution reaction

    , Article Journal of Colloid and Interface Science ; Volume 604 , 2021 , Pages 832-843 ; 00219797 (ISSN) Shamloofard, M ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Increasing energy demands for pollution-free and renewable energy technologies have stimulated intense research on the development of inexpensive, highly efficient, and stable non-noble metal electrocatalysts for oxygen evolution reaction (OER). In this study, a superior OER performance was achieved using a tri-metallic (Zn, Co, Ni) high-performance electrocatalyst. We successfully fabricated a peony-flower-like hierarchical ZnCo2O4 through an additive-free hydrothermal reaction followed by heat treatment. Then NiCo-LDH (layered double hydroxides) nano-flakes was electrodeposited on the ZnCo2O4/GCE surface to prepare NiCo-LDH/ZnCo2O4/GCE which was used as electrode for OER. The structure and... 

    Dual-electrocatalysis behavior of star-like zinc-cobalt-sulfide decorated with cobalt-molybdenum-phosphide in hydrogen and oxygen evolution reactions

    , Article Nanoscale ; Volume 13, Issue 41 , 2021 , Pages 17576-17591 ; 20403364 (ISSN) Shamloofard, M ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Although important advances have been acquired in the field of electrocatalysis, the design and fabrication of highly efficient and stable non-noble earth-abundant metal catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remain a significant challenge. In this study, we have designed a superior bifunctional catalyst for OER and HER in alkaline media based on the Co-Mo-P/Zn-Co-S multicomponent heterostructure. The as-prepared multicomponent heterostructure was successfully obtained via a simple three-step hydrothermal-sulfidation-electrodeposition process consisting of star-like Co-Zn-S covered with Co-Mo-P. The structure and morphology evaluation of the... 

    Electrochemical determinations of 6-mercaptopurine on the surface of a carbon nanotube-paste electrode modified with a cobalt salophen complex

    , Article Journal of Solid State Electrochemistry ; Volume 16, Issue 4 , April , 2012 , Pages 1643-1650 ; 14328488 (ISSN) Shahrokhian, S ; Ghorbani Bidkorbeh, F ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    2012
    Abstract
    A mixture of multi-walled carbon nanotube/graphite paste electrode modified with a salophen complex of cobalt was prepared and was applied for the study of the electrochemical behavior of 6-mercaptopurine (MP) using cyclic and differential pulse voltammetry (DPV). An excellent electrocatalytic activity toward the oxidation of MP was achieved, which led to a considerable lowering in the anodic overpotential and remarkable increase in the response sensitivity in comparison with unmodified electrode. Utilizing DPV method, a linear dynamic range of 1-100 μM with detection limit of 0.1 μM was obtained in phosphate buffer of pH 3.0. The electrochemical detection system was very stable, and the... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; 2017 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; Volume 43, Issue 4 , 2018 , Pages 2256-2267 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: Application to sensitive voltammetric determination of thioridazine

    , Article Biosensors and Bioelectronics ; Volume 24, Issue 11 , 2009 , Pages 3235-3241 ; 09565663 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Adeli, M ; Amini, M. K ; Sharif University of Technology
    2009
    Abstract
    Multi-walled carbon nanotubes (MWCNTs) were immobilised with cobalt nanoparticles and analyzed by transmission electron microscopy. This modification procedure substantially improved colloidal dispersion of the immobilised MWCNTs in water and organic solvents, yielding uniform and stable thin films for modification of the glassy carbon electrode surface. The modified electrode showed an efficient catalytic role for the electrochemical oxidation of thioridazine (TR), leading to remarkable decrease in its oxidation overpotential of approximately 100 mV and enhancement of the kinetics of the electrode reaction, which can be confirmed by increasing in the peak current and sharpness of the peak....