Loading...
Search for: component
0.01 seconds

    Effect of Cu2+ ion on biological performance of nanostructured uorapatite doped with copper

    , Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 2845-2855 ; 10263098 (ISSN) Nikonam Mofrad, R ; Sadrnezhaad, S. K ; Vahdati Khaki, J ; Sharif University of Technology
    Abstract
    Nanostructured copper-doped uorapatite (Cux.Ca(10X).(PO4)6.F2) having crystallite sizes of 19, 29, and 34 nm at x = 0:9, 0.4, and 0.0, respectively, was synthesized by planetary ball milling of CaO, P2O5, CaF2, and CuO powders. Specifications of the products were determined by Fourier-transform infrared spectroscopy, eld emission scanning electron microscopy, transmission electron microscopy, and X-ray di raction analyses. In-vitro studies and Mossman's Tetrazole Test (MTT) assays were also conducted by incubating Cux.Ca(10X).(PO6).F2 powder into Kokubo's Simulated Body Fluid (SBF) and against BT-20 cell, respectively, to determine bioactivity and biocompatibility of the materials.... 

    Effect of CO2 and natural surfactant of crude oil on the dynamic interfacial tensions during carbonated water flooding: experimental and modeling investigation

    , Article Journal of Petroleum Science and Engineering ; Volume 159 , 2017 , Pages 58-67 ; 09204105 (ISSN) Lashkarbolooki, M ; Riazi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Carbonated water has been recently proposed as an enhanced oil recovery method for crude oil reservoirs. Interfacial tension (IFT) plays a crucial rule on the displacement of trapped oil ganglia in the porous media. This investigation is designed to systematically assess the dynamic interfacial tension (DIFT) of two different types of crude oils with carbonated water (CW). In addition, the measured experimental data were applied into specified models. The DIFT behavior of acidic and non-acidic crude oil samples/CW and deionized water (DW) are also compared to find the effect of dissolved carbon dioxide in water on IFT. At the next stage, DIFT of all the results were used through three... 

    A novel approach to spinal 3-D kinematic assessment using inertial sensors: towards effective quantitative evaluation of low back pain in clinical settings

    , Article Computers in Biology and Medicine ; Volume 89 , 2017 , Pages 144-149 ; 00104825 (ISSN) Ashouri, S ; Abedi, M ; Abdollahi, M ; Dehghan Manshadi, F ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    Abstract
    This paper presents a novel approach for evaluating LBP in various settings. The proposed system uses cost-effective inertial sensors, in conjunction with pattern recognition techniques, for identifying sensitive classifiers towards discriminate identification of LB patients. 24 healthy individuals and 28 low back pain patients performed trunk motion tasks in five different directions for validation. Four combinations of these motions were selected based on literature, and the corresponding kinematic data was collected. Upon filtering (4th order, low pass Butterworth filter) and normalizing the data, Principal Component Analysis was used for feature extraction, while Support Vector Machine... 

    Alzheimer’s disease early diagnosis using manifold-based semi-supervised learning

    , Article Brain Sciences ; Volume 7, Issue 8 , 2017 ; 20763425 (ISSN) Khajehnejad, M ; Habibollahi Saatlou, F ; Mohammadzade, H ; Sharif University of Technology
    Abstract
    Alzheimer’s disease (AD) is currently ranked as the sixth leading cause of death in the United States and recent estimates indicate that the disorder may rank third, just behind heart disease and cancer, as a cause of death for older people. Clearly, predicting this disease in the early stages and preventing it from progressing is of great importance. The diagnosis of Alzheimer’s disease (AD) requires a variety of medical tests, which leads to huge amounts of multivariate heterogeneous data. It can be difficult and exhausting to manually compare, visualize, and analyze this data due to the heterogeneous nature of medical tests, therefore, an efficient approach for accurate prediction of the... 

    Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator

    , Article Applied Energy ; Volume 199 , 2017 , Pages 382-399 ; 03062619 (ISSN) Alipoor, A ; Saidi, M. H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In the present work, a micro combustor for thermophotovoltaic (TPV) devices is proposed which is included a U-shaped microtube in a box with a secondary fluid in space between U-shaped microtube and box walls. By utilizing the three-dimensional CFD model, combustion characteristics of the premixed lean hydrogen-air mixture in the present micro combustor are studied numerically with detailed chemistry and transport taking into account heat transfer through the wall. The results show that the establishment of secondary flows and better preheating in the curved tubes is caused the flammability limits to be at least four times in comparison with straight tubes. Combustion characteristics are... 

    Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition

    , Article Bioresource Technology ; Volume 239 , 2017 , Pages 378-386 ; 09608524 (ISSN) Mohamadzadeh Shirazi, H ; Karimi Sabet, J ; Ghotbi, C ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Microalgae as a candidate for production of biodiesel, possesses a hard cell wall that prevents intracellular lipids leaving out from the cells. Direct or in situ supercritical transesterification has the potential for destruction of microalgae hard cell wall and conversion of extracted lipids to biodiesel that consequently reduces the total energy consumption. Response surface methodology combined with central composite design was applied to investigate process parameters including: Temperature, Time, Methanol-to-dry algae, Hexane-to-dry algae, and Moisture content. Thirty-two experiments were designed and performed in a batch reactor, and biodiesel efficiency between 0.44% and 99.32% was... 

    Studies of Iranian heavy oils pertinent to reservoir conditions for their auto-ignition to initiate fire flooding

    , Article Chemical Engineering Communications ; Volume 196, Issue 5 , 2009 , Pages 643-657 ; 00986445 (ISSN) Price, D ; Razzaghi, S ; Kharrat, R ; Rashtchian, D ; Vossoughi, S ; Sharif University of Technology
    2009
    Abstract
    In this work, the potential for the auto-ignition of Iranian heavy oil during in situ combustion (ISC) process conditions was studied. Kinetic studies were carried out using thermal analysis techniques. Effects of oxygen partial pressure, reservoir pressure, and clay on the auto-ignition condition were investigated. Based on the experimental results obtained, a kinetic equation was derived for each of the different oil samples in the presence of different sands. The effect of partial pressure of oxygen in the injected air showed that at atmospheric pressure, low temperature combustion (LTC) was initiated at 275°C. Also, enriching the injected air by oxygen lowers the initial LTC temperature... 

    Predictive fault-tolerant control of an all-thruster satellite in 6-DOF motion via neural network model updating

    , Article Advances in Space Research ; Volume 61, Issue 6 , March , 2018 , Pages 1588-1599 ; 02731177 (ISSN) Tavakoli, M. M ; Assadian, N ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. the nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in... 

    Analytical study of binary differential impulse radio-ultra wide band over single-mode fibre systems using two receiver structures

    , Article IET Communications ; Volume 3, Issue 2 , 2009 , Pages 309-320 ; 17518628 (ISSN) Jazayerifar, M ; Salehi, J. A ; Cabon, B ; Sharif University of Technology
    2009
    Abstract
    A binary differential impulse radio-ultra wide band (IR-UWB) communication scheme over a single-mode optical fibre is examined. For a receiver structure, the conventional electrical receiver as well as an optical receiver structure, which is similar to the optical receiver used for digital, optically phase-modulated differential phase shift keying, are considered. The optical receiver can alleviate the IR-UWB receiver implementation challenges and it is studied for the first time in the context of IR-UWB. Considering various important noises, for example, phase noise, laser intensity noise, thermal noise and shot noise, analytical expressions for the error probability of the aforementioned... 

    All-optical flip-flop composed of a single nonlinear passive microring coupled to two straight waveguides

    , Article Optics Communications ; Volume 282, Issue 3 , 2009 , Pages 427-433 ; 00304018 (ISSN) Bahrampour, A. R ; Mirzaee, M. A ; Farman, F ; Zakeri, S ; Sharif University of Technology
    2009
    Abstract
    Microrings can have different hysteresis characteristics at their different resonance frequencies. They can be used as a multi-hysteresis optical component. In this paper an optical D-flip-flop circuit composed of a single nonlinear passive microring coupled to two straight waveguide based on the Kerr effect is proposed. The proposed circuit can operate as an optical digital circuit which synchronizes input DATA with the CLOCK of the circuit. A simple analytical model for hysteresis design and the transient analysis of the proposed D-flip-flop are presented. According to our model, the switching time of the flip-flop is in the order of 10 ps. Crown Copyright © 2008  

    Application of a new cylindrical element formulation in finite element structural analysis of FGM hollow cylinders

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 14 , 2009 , Pages 21-25 ; 9780791848753 (ISBN) Ahmadian, M. T ; Taghvaeipour, A ; Bonakdar, M ; Sharif University of Technology
    2009
    Abstract
    Functionally graded materials are advanced composite materials consisting two or more material ingredients that are engineered to have a continuous spatial variation of properties. There are a few analytical methods available to solve the governing equations of FGM made structures, confined to some specific and limited shapes, loadings and boundary conditions. Hence the numerical methods such as FEM are used to treat these materials. In previous studies the finite element method was used to solve thin walled FG structures like shells and plates by modification of the conventional shell and plate elements. Solving the thick walled FG structures confronts some difficulties. One of the methods... 

    Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 9 , 2009 , Pages 2456-2467 ; 1738494X (ISSN) Javadzadegan, A ; Esmaeili, M ; Majidi, S ; Fakhimghanbarzadeh, B ; Sharif University of Technology
    2009
    Abstract
    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A msathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier-stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the... 

    Measurement and calculation of 13C and 15N NMR chemical-shift tensors of a push-pull ethylene

    , Article Canadian Journal of Chemistry ; Volume 87, Issue 4 , 2009 , Pages 563-570 ; 00084042 (ISSN) Amini, S. K ; Tafazzoli, M ; Jenkins, H. A ; Goward, G. R ; Bain, A. D ; Sharif University of Technology
    2009
    Abstract
    Methyl 3-dimethylamino-2-cyanocrotonate (MDACC) has a remarkably weak carbon-carbon double bond. It has strong electron-withdrawing groups on one end and electron-donating groups on the other: a so-called push-pull ethylene. To investigate this unusual electronic structure, we have determined the crystal structure and measured both the 13C and 15N NMR chemical-shift tensors. These measurements are supplemented by shielding-tensor calculations done with density functional methods. The large difference (approximately 100 ppm) between isotropic chemical shifts of the two alkenyl carbons reflects a large charge release from the electron-donating side of C=C double bond to the... 

    A simple three-phase model for distributed static series compensator (DSSC) in Newton power flow

    , Article 2009 Asia-Pacific Power and Energy Engineering Conference, APPEEC 2009, Wuhan, 27 March 2009 through 31 March 2009 ; 2009 ; 21574839 (ISSN); 9781424424870 (ISBN) Jalayer, R ; Mokhtari, H ; Wuhan University; IEEE Power and Energy Society; Chinese Society for Electrical Engineering; Scientific Research Publishing ; Sharif University of Technology
    2009
    Abstract
    Load flow problems have always been an important issue in power system analysis and require proper modeling of system components. In this regard Flexible AC Transmission System (FACTS) controllers are modern devices that their modeling specially the series type is a challenging topic. This paper describes a three-phase model for Distributed Static Series Compensator (DSSC) based on extending the Static Synchronous Series Compensator (SSSC) model in Newton power flow. To extend the SSSC model the following two differences must be considered; three completely independent phases and the existence of several modules in a DSSC system. Simulation results on the IEEE 30-bus system and a five bus... 

    Superheated water extraction of catechins from green tea leaves: Modeling and simulation

    , Article Scientia Iranica ; Volume 16, Issue 2 C , 2009 , Pages 99-107 ; 10263098 (ISSN) Goodarznia, I ; Abdollahi Govar, A ; Sharif University of Technology
    2009
    Abstract
    Catechins from fresh green tea leaves as potential sources of anticancer and antioxidant components were target materials in this work. Superheated water extraction, which is a kind of leaching operation, and solvent partition with chloroform and ethyl acetate were utilized to recover Catechins from tea leaves. Then, a mathematical model was developed to simulate the superheated water extraction of Catechins. The unsteady state mass balance of the solute in solid and superheated water phases led to two partial differential equations. The model was solved numerically using a linear equilibrium relationship. The model parameters were predicted applying existing experimental correlations. An... 

    Investigation of valve-closing law on the maximum head rise of a hydropower plant

    , Article Scientia Iranica ; Volume 16, Issue 3 B , 2009 , Pages 222-228 ; 10263098 (ISSN) Vakil, A ; Firoozabadi, B ; Sharif University of Technology
    2009
    Abstract
    Piping systems commonly experience the transient-state situation as the result of changes to flow conditions during pump failures, valve closures or turbine load rejection. This paper addresses transients as a consequence of the load rejection of a Francis hydropower plant (Karun 4, Ahwaz, Iran). To control the turbine system and related equipment during load rejection, the valve closing law of wicket gates is of paramount importance. The pressure rise at the end of the pressure shaft, the pressure drop in the draft tube and the speed rise while the electromagnetic braking torque disappears are solely dependent on the closing curve. Thus, an optimum closing law can eliminate the probable... 

    Genome-wide DNA methylation profiling in ectopic and eutopic of endometrial tissues

    , Article Journal of Assisted Reproduction and Genetics ; Volume 36, Issue 8 , 2019 , Pages 1743-1752 ; 10580468 (ISSN) Barjaste, N ; Shahhoseini, M ; Afsharian, P ; Sharifi Zarchi, A ; Masoudi Nejad, A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Purpose: Endometriosis is a gynecological disease that causes the uterine lining to appear in other organs outside the uterus. As DNA methylation has an important role in this disorder, its profiling can reveal new information to improve the diagnosis and treatment of endometriosis patients. Methods: We conducted a genome-wide methylation profiling of ectopic and eutopic endometrial tissues from women with and without endometriosis using Infinium Human Methylation 450K BeadChip arrays. DNA methylation samples were collected from nine ectopic and nine eutopic endometrial tissues of endometriosis and six endometrial tissues of healthy controls. Results: Correlation heatmaps and the principal... 

    A detailed atomic level computational and electrochemical exploration of the Juglans regia green fruit shell extract as a sustainable and highly efficient green corrosion inhibitor for mild steel in 3.5 wt% NaCl solution

    , Article Journal of Molecular Liquids ; Volume 284 , 2019 , Pages 682-699 ; 01677322 (ISSN) Haddadi, S. A ; Alibakhshi, E ; Bahlakeh, G ; Ramezanzadeh, B ; Mahdavian, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Seawater, which has been frequently applied in cooling and injection water systems, imposes severe pitting corrosion to mild steel. Addition of green and sustainable inhibitors based on renewable sources is one of the promising methodologies for restricting metal corrosion in chloride-containing electrolytes. In this study, for the first time, from both theoretical and experimental faces, the role of Juglans regia green fruit shell (JRS) extract as a sustainable potent corrosion inhibitor for mild steel was studied. The chemical structure of the JRS extract was deliberated by Fourier transform infrared spectroscopy (FT-IR). By electrochemical techniques including polarization, EIS and... 

    Performance-based seismic design and assessment of low-rise steel special moment resisting frames with block slit dampers using endurance time method

    , Article Engineering Structures ; Volume 224 , 2020 Ahmadie Amiri, H ; Pournamazian Najafabadi, E ; Esmailpur Estekanchi, H ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Block Slit Dampers (BSDs) are recently developed metallic yielding dampers for passive structural control. This type of damping devices can provide designers with an option of using highly ductile systems, such as steel special moment resisting frames (steel SMRFs), in important structures located in regions of high seismicity. The aim of this study is to obtain a performance-based seismic design (PBSD) procedure for these devices, and to assess the seismic performance levels of low-rise steel SMRF equipped with BSDs using the endurance time (ET) dynamic analysis method. For this purpose, first, the simplified behavioral model of these devices was established based on the analysis of... 

    Wettability alteration of calcite rock from gas- repellent to gas-wet using a fluorinated nanofluid: A surface analysis study

    , Article Journal of Natural Gas Science and Engineering ; Volume 83 , 2020 Azadi Tabar, M ; Shafiei, Y ; Shayesteh, M ; Dehghan Monfared, A ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Wettability alteration analysis form gas-repellent to gas-wet with the aid of chemical agents has been subjected of numerous studies. However, fundamental understanding of the effect of surface tension of liquid on repellency strength, the change in the intermolecular forces due to the adsorption of nanoparticles onto the rock surfaces, and exposure of treated rock in brine are not well discussed in the available literature. In this study, X-ray diffraction, Atomic Force Microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were applied to characterize the treated and fresh samples. Dynamic and static contact angle measurements were then combined with six methods...