Loading...
Search for: component
0.013 seconds

    Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy based on chemometrics for saffron authentication and adulteration detection

    , Article Food Chemistry ; Volume 344 , 2021 ; 03088146 (ISSN) Amirvaresi, A ; Nikounezhad, N ; Amirahmadi, M ; Daraei, B ; Parastar, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this work, the potential of near-infrared (NIR) and mid-infrared (MIR) spectroscopy along with chemometrics was investigated for authentication and adulteration detection of Iranian saffron samples. First, authentication of one-hundred saffron samples was examined by principal component analysis (PCA). The results showed the NIR spectroscopy can better predict the origin of samples than the MIR. Next, partial least squares-discriminant analysis (PLS-DA) was developed to detect four common plant-derived adulterants (i.e., saffron style, calendula, safflower, and rubia). In all cases, PLS-DA classification figures of merit in terms of sensitivity, specificity, error rate and accuracy were... 

    Dynamic analysis of electrorheological fluid sandwich cylindrical shells with functionally graded face sheets using a semi-analytical approach

    , Article Composite Structures ; Volume 295 , 2022 ; 02638223 (ISSN) Shahali, P ; Haddadpour, H ; Shakhesi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The present research is performed to calculate the natural frequencies, loss factors, and associated mode shapes of a sandwich cylinder with moderately thick functionally graded (FG) face sheets and an electrorheological (ER) fluid core. Each face sheet is assumed to be made of FG materials, and its displacement field is estimated based on the first-order shear deformation theory, like the ER constrained layer. A suitable displacement continuity condition is considered between layers. The ER fluid used in the central middle is analyzed in the pre-yield area and considered electric field dependent. Hamilton's principle is used to acquire the motion equations related to each layer and... 

    Recent advances in aqueous virus removal technologies

    , Article Chemosphere ; Volume 305 , 2022 ; 00456535 (ISSN) Al-Hazmi, H. E ; Shokrani, H ; Shokrani, A ; Jabbour, K ; Abida, O ; Mousavi Khadem, S. S ; Habibzadeh, S ; Sonawane, S. H ; Saeb, M. R ; Bonilla-Petriciolet, A ; Badawi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The COVID-19 outbreak has triggered a massive research, but still urgent detection and treatment of this virus seems a public concern. The spread of viruses in aqueous environments underlined efficient virus treatment processes as a hot challenge. This review critically and comprehensively enables identifying and classifying advanced biochemical, membrane-based and disinfection processes for effective treatment of virus-contaminated water and wastewater. Understanding the functions of individual and combined/multi-stage processes in terms of manufacturing and economical parameters makes this contribution a different story from available review papers. Moreover, this review discusses... 

    Nanofluid preparation, stability and performance for CO2 absorption and desorption enhancement: A review

    , Article Journal of Environmental Management ; Volume 313 , 2022 ; 03014797 (ISSN) Tavakoli, A ; Rahimi, K ; Saghandali, F ; Scott, J ; Lovell, E ; Sharif University of Technology
    Academic Press  2022
    Abstract
    In recent years, the importance of capturing CO2 has increased due to the necessity of minimizing climate change and the detrimental effects of CO2 emissions from industrial processes. CO2 absorption, as one of the most mature carbon capture technologies, has been improved by introducing nanosized particles into liquid absorbents. Nanofluids have been the subject of interest in many studies recently due to their tremendous impact on absorption. This review comprehensively examines the CO2 absorption behavior for nanofluids through the investigation of different absorption systems. Potential mechanisms for improving the absorption/regeneration performance of nanoabsorbents as well as the... 

    Thermo-mechanical modeling of high speed spindles

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 282-293 ; 10263098 (ISSN) Zahedi, A ; Movahhedy, M. R ; Sharif University of Technology
    2012
    Abstract
    Prediction of the thermo-mechanical behavior of machine-tool spindles is essential in the reliable operation of high speed machine tools. In particular, the performance of these high speed spindles is dependent on their thermal behavior. The main source of heat generation in the spindle is the friction torque in angular contact ball bearings. This paper presents an effort to develop a comprehensive model of high speed spindles that includes viable models for the mechanical and thermal behavior of its major components, i.e., bearings, shaft and housing. Spindle housing and shaft are treated as six-degree-of-freedom Timoshenko beam elements. Bearings are modeled as two-node elements with five... 

    Thermodynamic modeling of hydrogen sulfide solubility in ionic liquids using modified SAFT-VR and PC-SAFT equations of state

    , Article Fluid Phase Equilibria ; Volume 309, Issue 2 , 2011 , Pages 179-189 ; 03783812 (ISSN) Rahmati Rostami, M ; Behzadi, B ; Ghotbi, C ; Sharif University of Technology
    2011
    Abstract
    Equations of state based on the statistical associating fluid theory for potentials of variable range (SAFT-VR) and the perturbed chain statistical associating fluid theory (PC-SAFT) have been used to model the PVT behavior of ionic liquids and the solubility of H2S in six imidazolium-based ionic liquids. The studied systems included [bmim][PF6], [hmim][PF6], [bmim][BF4], [hmim][BF4], [bmim][NTF2] and [hmim][NTF2] at various temperatures and pressures.For pure components, parameters of the models have been obtained by fitting the models to experimental data on liquid densities; the average relative deviation between the calculated and experimental densities for ionic liquids is less than... 

    Coating thickness and roughness effect on stress distribution of A356.0 under thermo-mechanical loadings

    , Article Procedia Engineering, 5 June 2011 through 9 June 2011 ; Volume 10 , June , 2011 , Pages 1372-1377 ; 18777058 (ISSN) Moridi, A ; Azadi, M ; Farrahi, G. H ; Sharif University of Technology
    2011
    Abstract
    Cast aluminium-silicon alloy, A356.0, is widely used in automotive components such as diesel engine cylinder heads and also in aerospace industries because of its outstanding mechanical, physical, and casting properties. Thermal barrier coatings are applied to combustion chamber in order to reduce fuel consumption and pollutions and also improve fatigue life of components. However, studies on behaviour of A356.0 with thermal barrier coating are still rare. The purpose of the present work is to simulate stress distribution of A356.0 under thermo-mechanical cyclic loadings, using a two-layer elastic-visco-plastic model of ABAQUS software. The results of stress-strain hysteresis loop are... 

    Hybrid predictive control of a DC-DC boost converter in both continuous and discontinuous current modes of operation

    , Article Optimal Control Applications and Methods ; Volume 32, Issue 3 , 2011 , Pages 270-284 ; 01432087 (ISSN) Hejri, M ; Mokhtari, H ; Sharif University of Technology
    Abstract
    Developing efficient and appropriate modeling and control techniques for DC-DC converters is of major importance in power electronics area and has attracted much attention from automatic control theory. Since DC-DC converters have a complex hybrid nature, recently several techniques based on hybrid modeling and control have been introduced. These techniques have shown better results as compared with conventional averaging-based schemes with limited modeling and control abilities. But the current works in this field have not considered all possible dynamics of the converters in both continuous and discontinuous current modes (CCM, DCM) of operations. These dynamics are results of controlled... 

    Fluid particle diffusion through high-hematocrit blood flow within a capillary tube

    , Article Journal of Biomechanics ; Volume 44, Issue 1 , Jan , 2011 , Pages 170-175 ; 00219290 (ISSN) Saadatmand, M ; Ishikawa, T ; Matsuki, N ; Jafar Abdekhodaie, M ; Imai, Y ; Ueno, H ; Yamaguchi, T ; Sharif University of Technology
    2011
    Abstract
    Fluid particle diffusion through blood flow within a capillary tube is an important phenomenon to understand, especially for studies in mass transport in the microcirculation as well as in solving technical issues involved in mixing in biomedical microdevices. In this paper, the spreading of tracer particles through up to 20% hematocrit blood, flowing in a capillary tube, was studied using a confocal micro-PTV system. We tracked hundreds of particles in high-hematocrit blood and measured the radial dispersion coefficient. Results yielded significant enhancement of the particle diffusion, due to a micron-scale flow-field generated by red blood cell motions. By increasing the flow rate, the... 

    Three-dimensional nonlinear seismic analysis of concrete faced rockfill dams subjected to scattered P, SV, and SH waves considering the dam-foundation interaction effects

    , Article Soil Dynamics and Earthquake Engineering ; Volume 31, Issue 5-6 , 2011 , Pages 792-804 ; 02677261 (ISSN) Seiphoori, A ; Mohsen Haeri, S ; Karimi, M ; Sharif University of Technology
    2011
    Abstract
    In this study, the nonlinear seismic analysis of a typical three-dimensional concrete faced rockfill dam is reported. Three components of the Loma Prieta (Gilroy 1 station) earthquake acceleration time history are used as input excitation. The dam under study is considered as if it were located in a prismatic canyon with a trapezoidal cross-section. A nonlinear model for the rockfill material is used, and contact elements with Coulomb friction law are utilized at the slab-rockfill interface. Vertical joints in the face slab are also considered in the finite element model. A substructure method, in which the unbounded soil is modelled by the scaled boundary finite element method (SBFEM), is... 

    A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles

    , Article Analytica Chimica Acta ; Volume 882 , July , 2015 , Pages 58-67 ; 00032670 (ISSN) Ghasemi, F ; Hormozi-Nezhad, M.R ; Mahmoudi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Developments of sensitive, rapid, and cheap systems for identification of a wide range of biomolecules have been recognized as a critical need in the biology field. Here, we introduce a simple colorimetric sensor array for detection of biological thiols, based on aggregation of three types of surface engineered gold nanoparticles (AuNPs). The low-molecular-weight biological thiols show high affinity to the surface of AuNPs; this causes replacement of AuNPs' shells with thiol containing target molecules leading to the aggregation of the AuNPs through intermolecular electrostatic interaction or hydrogen-bonding. As a result of the predetermined aggregation, color and UV-vis spectra of AuNPs... 

    Thermodynamic modeling for hydrogen production from biomass and evaluation of biomass energy technologies

    , Article Biotechniques for Air Pollution Control - Proceedings of the 3rd International Congress on Biotechniques for Air Pollution Control, 28 September 2009 through 30 September 2009, Delft ; 2010 , Pages 269-273 ; 9780415582704 (ISBN) Hemmati, Sh ; Saboohi, Y ; Hashemi, N ; Vossoughi, M ; Pazuki, G. R ; Sharif University of Technology
    2010
    Abstract
    Compared with fossil fuel, biomass is a clean energy with zero CO 2 emission, because CO 2 is fixed by photosynthesis during biomass growth and released again during utilization. Due to its low energy density, direct use of biomass is not convenient. Thus, it is necessary to convert biomass to fuel gas, such as hydrogen, which can be used cleanly and highly efficiently in fuel cell. Thermo-chemical gasification is likely to be the most cost-effective conversion process and it is promising technology for renewable hydrogen production by utilizing biomass. Biomass gasification produces a mixture of gases (mainly consisting of H 2, CO, CO 2, CH 4 and higher hydrocarbons), solids (char) and... 

    Panel flutter analysis of general laminated composite plates

    , Article Composite Structures ; Volume 92, Issue 12 , November , 2010 , Pages 2906-2915 ; 02638223 (ISSN) Kouchakzadeh, M. A ; Rasekh, M ; Haddadpour, H ; Sharif University of Technology
    2010
    Abstract
    The problem of nonlinear aeroelasticity of a general laminated composite plate in supersonic air flow is examined. The classical plate theory along with the von-Karman nonlinear strains is used for structural modeling, and linear piston theory is used for aerodynamic modeling. The coupled partial differential equations of motion are derived by use of Hamilton's principle and Galerkin's method is used to reduce the governing equations to a system of nonlinear ordinary differential equations in time, which are then solved by a direct numerical integration method. Effects of in-plane force, static pressure differential, fiber orientation and aerodynamic damping on the nonlinear aeroelastic... 

    Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory

    , Article Composite Structures ; Volume 92, Issue 8 , 2010 , Pages 1865-1876 ; 02638223 (ISSN) Ghafoori, E ; Asghari, M ; Sharif University of Technology
    2010
    Abstract
    The dynamic response of angle-ply laminated composite plates traversed by a moving mass or a moving force is investigated. For this purpose, a finite element method based on the first-order shear deformation theory is used. Stationary and adaptive mesh techniques have been applied as two different meshing schemes. The adaptive mesh strategy is then used to avoid off-nodal position of moving mass. In this manner, the finite element mesh is continuously adapted to follow and comply with the path of moving mass. A Newmark direct integration method is employed to solve the equations of motion. Parametric study is directed to find out how different parameters like mass of the moving object as... 

    Membrane protected conductive polymer as micro-SPE device for the determination of triazine herbicides in aquatic media

    , Article Journal of Separation Science ; Volume 33, Issue 8 , 2010 , Pages 1132-1138 ; 16159306 (ISSN) Bagheri, H ; Khalilian, F ; Naderi, M ; Babanezhad, E ; Sharif University of Technology
    Abstract
    A micro-SPE technique was developed by fabricating a rather small package including a polypropylene membrane shield containing the appropriate sorbent. The package was used for the extraction of some triazine herbicides from aqueous samples. Solvent desorption was subsequently performed in a microvial and an aliquot of extractant was injected into GC-MS. Various sorbents including aniline-ortho-phenylene diamine copolymer, newly synthesized, polypyrrole, multiwall carbon nanotube, C18 and charcoal were examined as extracting media. Among them, conductive polymers exhibited better performance. Influential parameters including extraction and desorption time, desorption solvent and the ionic... 

    Experimental study of three-dimensional flow field around a complex bridge pier

    , Article Journal of Engineering Mechanics ; Volume 136, Issue 2 , 2010 , Pages 143-154 ; 07339399 (ISSN) Beheshti, A. A ; Ataie Ashtiani, B ; Sharif University of Technology
    2010
    Abstract
    In this paper, three-dimensional turbulent flow field around a complex bridge pier placed on a rough fixed bed is experimentally investigated. The complex pier foundation consists of a column, a pile cap, and a 2×4 pile group. All of the elements are exposed to the approaching flow. An acoustic-Doppler velocimeter was used to measure instantaneously the three components of the velocities at different horizontal and vertical planes. Profiles and contours of time-averaged velocity components, turbulent intensity components, turbulent kinetic energy, and Reynolds stresses, as well as velocity vectors are presented and discussed at different vertical and horizontal planes. The approaching... 

    A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 75, Issue 1 , 2010 , Pages 300-309 ; 09277765 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Shokrgozar, M. A ; Milani, A. S ; Häfeli, U. O ; Stroeve, P ; Sharif University of Technology
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPIONs) are increasingly used in medical applications, such as targeting delivery and imaging. In the future, patients are more likely to be exposed to pharmaceutical products containing such particles. The study of toxicity of SPIONs has become of great importance in recent years, although the published data in this arena is limited. The aim of the present work is to investigate the cytotoxicity of SPIONs and the effect of the particles on the cell medium components. For this purpose, uncoated and polyvinyl alcohol (PVA) coated SPIONs with narrow size distribution were synthesized via a well-known coprecipitation method. The mouse fibroblast cell... 

    Fuzzy C-means clustering for chromatographic fingerprints analysis: A gas chromatography-mass spectrometry case study

    , Article Journal of Chromatography A ; Volume 1438 , 2016 , Pages 236-243 ; 00219673 (ISSN) Parastar, H ; Bazrafshan, A ; Sharif University of Technology
    Elsevier 
    Abstract
    Fuzzy C-means clustering (FCM) is proposed as a promising method for the clustering of chromatographic fingerprints of complex samples, such as essential oils. As an example, secondary metabolites of 14 citrus leaves samples are extracted and analyzed by gas chromatography-mass spectrometry (GC-MS). The obtained chromatographic fingerprints are divided to desired number of chromatographic regions. Owing to the fact that chromatographic problems, such as elution time shift and peak overlap can significantly affect the clustering results, therefore, each chromatographic region is analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) to address these problems. Then,... 

    Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran

    , Article Atmospheric Environment ; Volume 153 , 2017 , Pages 70-82 ; 13522310 (ISSN) Arhami, M ; Hosseini, V ; Zare Shahne, M ; Bigdeli, M ; Lai, A ; Schauer, J. J ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Frequent air pollution episodes have been reported for Tehran, Iran, mainly because of critically high levels of fine particulate matter (PM2.5). The composition and sources of these particles are poorly known, so this study aims to identify the major components and heavy metals in PM2.5along with their seasonal trends and associated sources. 24-hour PM2.5samples were collected at a main residential station every 6 days for a full year from February 2014 to February 2015. The samples were analyzed for ions, organic carbon (including water-soluble and insoluble portions), elemental carbon (EC), and all detectable elements. The dominant mass components, which were determined by means of... 

    Stability analysis of arch dam abutments due to seismic loading

    , Article Scientia Iranica ; Volume 24, Issue 2 , 2017 , Pages 467-475 ; 10263098 (ISSN) Mostafaei, H ; Sohrabi Gilani, M ; Ghaemian, M ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Abutments of concrete arch dams are usually crossed by several joints, which may create some rock wedges. Abutment stability analysis and controlling the probable wedge movements is one of the main concerns in the design procedure of arch dams that should be investigated. For decades, the quasi-static method, due to its simple approach, has been used by most of dam designers. In this study, the dynamic method is presented and the obtained time history of sliding safety factors is compared with the quasi-static results. For this purpose, all three components of Kobe (1979) and Imperial Valley (1940) earthquakes are applied to the wedge, simultaneously, and the magnitude and direction of wedge...