Loading...
Search for: compression
0.014 seconds

    A plastic-yield compaction model for nanostructured Al6063 alloy and Al6063/Al2O3 nanocomposite powder

    , Article Powder Technology ; Volume 211, Issue 2-3 , 2011 , Pages 215-220 ; 00325910 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    A modified plastic yield function is proposed to predict the consolidation behavior of nanostructured metal powders and metal-matrix nanocomposite powders under uniaxial compaction. The validity of the model is verified for nanocrystalline Al6063 (~100nm) alloy reinforced without and with 0.8vol.% Al2O3 nanoparticles (~25nm). The plastic deformation propensity of these powders is analyzed by linear compaction equations. The yield stress of the powder compacts is shown to be influenced by the nano-scale grains and the reinforcement nanoparticles  

    Optimization of geometric parameters of latticed structures using genetic algorithm

    , Article Aircraft Engineering and Aerospace Technology ; Volume 83, Issue 2 , 2011 , Pages 59-68 ; 00022667 (ISSN) Hashemian, A. H ; Kargarnovin, M. H ; Jam, J. E ; Sharif University of Technology
    2011
    Abstract
    Purpose - The purpose of this paper is to analyze a squared lattice cylindrical shell under compressive axial load and to optimize the geometric parameters to achieve the maximum buckling load. Also a comparison between buckling loads of a squared lattice cylinder and a solid hollow cylinder with equal weight, length and outer diameter is performed to reveal the superior performance of the squared lattice cylindrical shells. Design/methodology/ approach - A cylindrical lattice shell includes circumferential and longitudinal rods with geometric parameters such as crosssection areas of the rods, distances and angles between them. In this study, the governing differential equation for buckling... 

    Biodegradable ionic liquids: effects of temperature, alkyl side-chain length, and anion on the thermodynamic properties and interaction energies as determined by molecular dynamics simulations coupled with ab initio calculations

    , Article Industrial and Engineering Chemistry Research ; Volume 54, Issue 46 , November , 2015 , Pages 11678-11700 ; 08885885 (ISSN) Fakhraee, M ; Gholami, M. R ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    The effects of incorporating the ester functional group (-C=OO-) into the side chain of the 1-alkyl-3-methylimidazolium cation ([C1COOCnC1im]+, n = 1, 2, 4) paired with [Br]-, [NO3]-, [BF4]-, [PF6]-, [TfO]-, and [Tf2N]- anions on the various thermodynamic properties and interaction energies of these biodegradable ionic liquids (ILs) were investigated by means of molecular dynamics (MD) simulations combined with ab initio calculations in the temperature range of 298-550 K. Excluding the simulated density, the highest values of the volumetric properties such as molar volume, isobaric expansion coefficient, and isothermal compressibility coefficient can be attributed to the largest cation... 

    Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials

    , Article Strength of Materials ; Volume 47, Issue 5 , September , 2015 , Pages 740-754 ; 00392316 (ISSN) Haeri, H ; Khaloo, A ; Marji, M. F ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Rocks and rock-like materials frequently fail under compression due to the initiation, propagation and coalescence of the pre-existing microcracks. The mechanism of microcrack coalescence process in rock-like materials is experimentally and numerically investigated. The experimental study involves some uniaxial compression tests on rock-like specimens specially prepared from portland pozzolana cement, mica sheets and water. The microcrack coalescence is studied by scanning electron microscopy on some of the prepared thin specimens. It is assumed that the mica sheets play the role of microcracks within the specimens. Some analytical and numerical studies are also carried out to simulate the... 

    Pore-scale simulation of fluid flow passing over a porously covered square cylinder located at the middle of a channel, using a hybrid MRT-LBM–FVM approach

    , Article Theoretical and Computational Fluid Dynamics ; Volume 29, Issue 3 , 2015 , Pages 171-191 ; 09354964 (ISSN) Salimi, M. R ; Taeibi Rahni, M ; Jam, F ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    A comprehensive study was performed to analyze the unsteady laminar flow characteristics around a porously covered, a fully porous, and a solid squared section cylinder located in the middle of a plane channel. In order to simulate fluid flow inside porous media and porous–fluid interface accurately (minimizing modeling error), the porous region was analyzed in pore scale, using LBM. Additionally, to minimize the LBM-related compressibility error through the porous region, a multi-block multiple relaxation time lattice Boltzmann method (MRT-LBM) was used. Also, to decrease CPU time, a Navier–Stokes flow solver, based on finite volume method and SIMPLE algorithm, was coupled with MRT-LBM to... 

    Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches

    , Article Medical Engineering and Physics ; Volume 37, Issue 8 , 2015 , Pages 792-800 ; 13504533 (ISSN) Mohammadi, Y ; Arjmand, N ; Shirazi-Adl, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Various hybrid EMG-assisted optimization (EMGAO) approaches are commonly used to estimate muscle forces and joint loads of human musculoskeletal systems. Use of EMG data and optimization enables the EMGAO models to account for inter- and intra-individual variations in muscle recruitments while satisfying equilibrium requirements. Due to implications in ergonomics/prevention and rehabilitation/treatment managements of low-back disorders, there is a need to evaluate existing approaches. The present study aimed to compare predictions of three different EMGAO and one stability-based optimization (OPT) approaches for trunk muscle forces, spinal loads, and stability. Identical measured... 

    A viscoelastic model for axonal microtubule rupture

    , Article Journal of Biomechanics ; Volume 48, Issue 7 , 2015 , Pages 1241-1247 ; 00219290 (ISSN) Shamloo, A ; Manuchehrfar, F ; Rafii Tabar, H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Axon is an important part of the neuronal cells and axonal microtubules are bundles in axons. In axons, microtubules are coated with microtubule-associated protein tau, a natively unfolded filamentous protein in the central nervous system. These proteins are responsible for cross-linking axonal microtubule bundles. Through complimentary dimerization with other tau proteins, bridges are formed between nearby microtubules creating bundles. Formation of bundles of microtubules causes their transverse reinforcement and has been shown to enhance their ability to bear compressive loads. Though microtubules are conventionally regarded as bearing compressive loads, in certain circumstances during... 

    Robust digital video watermarking in an orthogonal parametric space

    , Article IEEE Region 10 Annual International Conference, Proceedings/TENCON, 21 November 2010 through 24 November 2010, Fukuoka ; 2010 , Pages 2258-2263 ; 9781424468904 (ISBN) Omidyeganeh, M ; Khalilian, H ; Ghaemmaghami, S ; Shirmohammadi, S ; Sharif University of Technology
    2010
    Abstract
    This paper presents an event based scheme for uncompressed video watermarking. The video signal is assumed to be a sequence of overlapping visual components - called events. We address this overlapping structure of video contents and present an event based approach through employing a block based Temporal Decomposition (TD) scheme. The TD describes a set of spectral parameters of the video as a linear combination of a set of temporally overlapping compact event functions. We have applied the decomposition results to digital video watermarking. To construct the matrix of parameters in the TD, Multiresolution Singular Value Decomposition (MR-SVD) is utilized and singular values of a set of... 

    Thermodynamic modeling and optimization of cogeneration heat and power system using Evolutionary algorithm (Genetic Algorithm)

    , Article Proceedings of the ASME Turbo Expo, 14 June 2010 through 18 June 2010 ; Volume 3 , 2010 , Pages 745-752 ; 9780791843987 (ISBN) Ebrahimi, P ; Karrabi, H ; Ghadami, S ; Barzegar, H ; Rasoulipour, S ; Kebriyaie, M ; Sharif University of Technology
    Abstract
    A gas-turbine cogeneration system with a regenerative air preheater and a single-pressure exhaust gas boiler serves as an example for application of CHP Plant. This CHP plant which can provide 30 MW of electric power and 14kg/s saturated steam at 20 bars. The plant is comprised of a gas turbine, air compressor, combustion chamber, and air pre-heater as well as a heat recovery steam generator (HRSG). The design Parameters of the plant, were chosen as: compressor pressure ratio (rc), compressor isentropic efficiency (ηac), gas turbine isentropic efficiency (ηgt), combustion chamber inlet temperature (T3), and turbine inlet temperature (T4). In order to optimally find the design parameters a... 

    Investigations on the effects of the tool material, geometry, and tilt angle on friction stir welding of pure titanium

    , Article Journal of Materials Engineering and Performance ; Volume 19, Issue 7 , 2010 , Pages 955-962 ; 10599495 (ISSN) Reshad Seighalani, K ; Besharati Givi, M. K ; Nasiri, A. M ; Bahemmat, P ; Sharif University of Technology
    2010
    Abstract
    Friction stir welding (FSW) parameters, such as tool material, tool geometry, tilt angle, tool rotational speed, welding speed, and axial force play a major role in the weld quality of titanium alloys. Because of excessive erosion, tool material and geometry play the main roles in FSW of titanium alloys. Therefore, in the present work for the first time, tool material and geometry, tool tilt angle, cooling system and shielding gas effects on macrostructure, microstructure, and mechanical properties of pure titanium weld joint were investigated. Result of this research shows that Ti can be joined by the FSW, using a tool with a shoulder made of tungsten (W) and simple pin made of tungsten... 

    Contourlet-based image watermarking using optimum detector in a noisy environment

    , Article IEEE Transactions on Image Processing ; Volume 19, Issue 4 , 2010 , Pages 967-980 ; 10577149 (ISSN) Akhaee, M. A ; Sahraeian, S. M. E ; Marvasti, F ; Sharif University of Technology
    Abstract
    In this paper, an improved multiplicative image watermarking system is presented. Since human visual system is less sensitive to the image edges, watermarking is applied in the contourlet domain, which represents image edges sparsely. In the presented scheme, watermark data is embedded in directional subband with the highest energy. By modeling the contourlet coefficients with General Gaussian Distribution (GGD), the distribution of watermarked noisy coefficients is analytically calculated. The tradeoff between the transparency and robustness of the watermark data is solved in a novel fashion. At the receiver, based on the Maximum Likelihood (ML) decision rule, an optimal detector by the aid... 

    Influence of nano-SiO2 addition on microstructure and mechanical properties of cement mortars for ferrocement

    , Article Transportation Research Record ; Issue 2141 , 2010 , Pages 15-20 ; 03611981 (ISSN) Hosseini, P ; Booshehrian, A ; Farshchi, S ; Sharif University of Technology
    Abstract
    Because of their unique physical and chemical properties, nanoparticles have been gaining increasing attention and have been used in many fields to fabricate new materials with novel functions. If nanoparticles are integrated with cement-based building materials, the new materials might possess some outstanding properties. Ferrocement is a type of thin-wall reinforced concrete commonly constructed of hydraulic cement mortar reinforced with closely spaced layers of continuous and relatively small-sized wire mesh. The low level of technical skill required to make ferrocement and the ready availability of its materials make ferrocement suitable for a wide variety of applications. This study... 

    Microstructural evolution of Al-20Si-5Fe alloy during rapid solidification and hot consolidation

    , Article Rare Metals ; Volume 28, Issue 6 , 2009 , Pages 639-645 ; 10010521 (ISSN) Rajabi, M ; Vahidi, M ; Simchi, A ; Davami, P ; Sharif University of Technology
    Abstract
    Al-20Si-5Fe melt was rapidly solidified into particles and ribbons and then consolidated to near full density by hot pressing at 400°C/250 MPa/1 h. According to the eutectic-growth and dendritic-growth velocity models, the solidification front velocity and the amount of undercooling were estimated for the particles with different sizes. Values of 0.43-1.2 cm/s and 15-28 K were obtained. The secondary dendrite arm spacing revealed a cooling rate of 6 × 105 K/s for the particles with an average size of 20 μm. Solidification models for the ribbons yielded a cooling rate of 5 × 107 K/s. As a result of the higher cooling rate, the melt-spun ribbons exhibited considerable microstructural... 

    Experimental and analytical evaluation of rubberized polymer concrete

    , Article Construction and Building Materials ; Volume 155 , 2017 , Pages 495-510 ; 09500618 (ISSN) Jafari, K ; Toufigh, V ; Sharif University of Technology
    Abstract
    Polymer concrete (PC) has been widely used for quick repairing of concrete pavement and structures in recent years. This paper studies the mechanical behavior of the rubberized polymer concrete. Crumb and chipped rubber were used to replace fine and coarse aggregates in PC, respectively. A complete series of destructive tests including impact test, compression and splitting tensile tests and non-destructive methods including ultrasonic test, digital signal processing, electrical conductivity, and microstructure analysis was performed to demonstrate the various potential applications of the rubberized PC. X-ray diffraction (XRD) also provided information regarding the chemical composition and... 

    Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO2 for bone tissue engineering

    , Article Materials Science and Engineering C ; Volume 79 , 2017 , Pages 783-792 ; 09284931 (ISSN) Johari, N ; Madaah Hosseini, H. R ; Samadikuchaksaraei, A ; Sharif University of Technology
    Abstract
    Natural silk fibroin (SF) polymer has biomedical and mechanical properties as a biomaterial for bone tissue engineering scaffolds. Freeze-dried porous nanocomposite scaffolds were prepared from silk fibroin and titanium dioxide (TiO2) nanoparticles as a bioactive reinforcing agent by a phase separation method. In order to fabricate SF/TiO2 scaffolds, 5, 10, 15 and 20 wt% of the TiO2 were added to the SF. The phase structure, functional groups and morphology of the scaffolds were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy techniques, respectively. Porosity of the scaffolds was measured by Archimedes' Principle. In addition,... 

    Analytical study of fluid flow modeling by diffusivity equation including the quadratic pressure gradient term

    , Article Computers and Geotechnics ; Volume 89 , 2017 , Pages 1-8 ; 0266352X (ISSN) Abbasi, M ; Izadmehr, M ; Karimi, M ; Sharifi, M ; Kazemi, A ; Sharif University of Technology
    Abstract
    Diffusivity equation which can provide us with the pressure distribution, is a Partial Differential Equation (PDE) describing fluid flow in porous media. The quadratic pressure gradient term in the diffusivity equation is nearly neglected in hydrology and petroleum engineering problems such as well test analysis. When a compressible liquid is injected into a well at high pressure gradient or when the reservoir possess a small permeability value, the effect of ignoring this term increases. In such cases, neglecting this parameter can result in high errors. Previous models basically focused on numerical and semi-analytical methods for semi-infinite domain. To the best of our knowledge, no... 

    Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine

    , Article Journal of Biomechanics ; Volume 57 , 2017 , Pages 18-26 ; 00219290 (ISSN) Eskandari, A. H ; Arjmand, N ; Shirazi Adl, A ; Farahmand, F ; Sharif University of Technology
    Abstract
    An essential input to the musculoskeletal (MS) trunk models that estimate muscle and spine forces is kinematics of the thorax, pelvis, and lumbar vertebrae. While thorax and pelvis kinematics are usually measured via skin motion capture devices (with inherent errors on the proper identification of the underlying bony landmarks and the relative skin-sensor-bone movements), those of the intervening lumbar vertebrae are commonly approximated at fixed proportions based on the thorax-pelvis kinematics. This study proposes an image-based kinematics measurement approach to drive subject-specific (musculature, geometry, mass, and center of masses) MS models. Kinematics of the thorax, pelvis, and... 

    Enhancement of bond characteristics of ribbed-surface GFRP bars with concrete by using carbon fiber mat anchorage

    , Article Construction and Building Materials ; Volume 134 , 2017 , Pages 507-519 ; 09500618 (ISSN) Ashrafi, H ; Bazli, M ; Vatani Oskouei, A. V ; Sharif University of Technology
    Abstract
    The bond of fiber-reinforced polymer (FRP) reinforcement is expected to be more sensitive to the strength and geometry of the ribs than conventional steel reinforcement. In this study, the effect of carbon fiber mat anchorage on the pullout behavior of glass fiber-reinforced polymer (GFRP) bars embedded in normal concrete is studied. The studied parameters were the compressive strength of the concrete (16 MPa, 24 MPa, and 37 MPa), and, the length and diameter of the anchorage. In total, 15 variables were studied. Ribbed GFRP bars with 10 mm nominal diameter and 80 mm embedment length, ld, (which is 8 times the bar diameter) were considered. Based on the results for concretes with the... 

    Insight into the behavior of colloidal gas aphron (CGA) fluids at elevated pressures: an experimental study

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 537 , January , 2018 , Pages 250-258 ; 09277757 (ISSN) Pasdar, M ; Kazemzadeh, E ; Kamari, E ; Ghazanfari, M. H ; Soleymani, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Recently, colloidal gas aphron (CGA) fluids technology has been employed to drill depleted oil and gas reservoirs. Almost all reported experience on CGA fluids were conducted at ambient conditions, and little attention has been paid on the behavior of CGAs at high pressures which is more close to real conditions. In this study, high pressure experiments were conducted by using High Pressure Microscope cell to visualize/monitor the behavior of CGAs at elevated pressures. Single bubble behavior and bubble size distribution (BSD) of CGAs were investigated under different scenarios of pressure change. Results of experiments revealed that BSD of CGAs is controlled by the path of pressure changes,... 

    A robust image watermarking using two level DCT and wavelet packets denoising

    , Article International Conference on Availability, Reliability and Security, ARES 2009, Fukuoka, Fukuoka Prefecture, 16 March 2009 through 19 March 2009 ; 2009 , Pages 150-157 ; 9780769535647 (ISBN) Taherinia, A. H ; Jamzad, M ; Sharif University of Technology
    2009
    Abstract
    In this paper we present a blind low frequency watermarking scheme on gray level images, which is based on DCT transform and spread spectrum communications technique. We compute the DCT of non overlapping 8x8 blocks of the host image, then using the DC coefficients of each block we construct a low-resolution approximation image. We apply block based DCT on this approximation image, then a pseudo random noise sequence is added into its high frequencies. For detection, we extract the approximation image from the watermarked image, then the same pseudo random noise sequence is generated, and its correlation is computed with high frequencies of the watermarked approximation image. In our method,...