Loading...
Search for: computer-simulation
0.018 seconds
Total 1255 records

    Numerical simulation of vortex engine flow field: One phase and two phases

    , Article Journal of Thermal Science ; Volume 18, Issue 3 , 2009 , Pages 226-234 ; 10032169 (ISSN) Najafi, A. F ; Saemi, S. D ; Saidi, M. H ; Sharif University of Technology
    2009
    Abstract
    Aiming at improving efficiency in combustion systems, the study on droplet behavior and its trajectory is of crucial importance. Vortex engine is a kind of internal combustion engine which uses swirl flow to achieve higher combustion efficiency. One of the important advantages of designing vortex engine is to reduce the temperature of walls by confining the combustion products in the inner vortex. The scopes of this investigation are to study vortex engine flow field as well as effective parameters on fuel droplet behavior such as droplet diameter, droplet initial velocity and inlet velocity of the flow field. The flow field is simulated using Reynolds Stress Transport Model (RSM). The... 

    A discretized analytical solution for fully coupled non-linear simulation of heat and mass transfer in poroelastic unsaturated media

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 33, Issue 13 , 2009 , Pages 1589-1611 ; 03639061 (ISSN) Arfaei Malekzadeh, F ; Pak, A ; Sharif University of Technology
    2009
    Abstract
    Mathematical simulation of non-isothermal multiphase flow in deformable unsaturated porous media is a complicated issue because of the need to employ multiple partial differential equations, the need to take into account mass and energy transfer between phases and because of the non-linear nature of the governing partial differential equations. In this paper, an analytical solution for analyzing a fully coupled problem is presented for the one-dimensional case where the coefficients of the system of equations are assumed to be constant for the entire domain. A major issue is the non-linearity of the governing equations, which is not considered in the analytical solution. In order to... 

    The ODYSSEY approach to early simulation-based equivalence checking at ESL level using automatically generated executable transaction-level model

    , Article Microprocessors and Microsystems ; Volume 32, Issue 7 , 2008 , Pages 364-374 ; 01419331 (ISSN) Goudarzi, M ; Hessabi, S ; MohammadZadeh, N ; Zainolabedini, N ; Sharif University of Technology
    2008
    Abstract
    Design technology is expected to rise to electronic system-level (ESL). This necessitates new techniques and tools for synthesizing ESL designs and for verifying them before and after ESL synthesis. A promising verification strategy for future very complex designs is to initially verify the design at the highest level of abstraction, and then check the equivalence of the lower level automatically generated models against that initial golden model. We present one such approach to simulation-based functional verification implemented in our ESL design methodology called ODYSSEY. Our ESL synthesis tool generates a transaction-level model (TLM) at TLM level 2 (i.e., design with partial timing)... 

    Trunk biomechanics during maximum isometric axial torque exertions in upright standing

    , Article Clinical Biomechanics ; Volume 23, Issue 8 , 2008 , Pages 969-978 ; 02680033 (ISSN) Arjmand, N ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2008
    Abstract
    Background: Activities involving axial trunk rotations/moments are common and are considered as risk factors for low back disorders. Previous biomechanical models have failed to accurately estimate the trunk maximal axial torque exertion. Moreover, the trunk stability under maximal torque exertions has not been investigated. Methods: A nonlinear thoracolumbar finite element model along with the Kinematics-driven approach is used to study biomechanics of maximal axial torque generation during upright standing posture. Detailed anatomy of trunk muscles with six distinct fascicles for each abdominal oblique muscle on each side is considered. While simulating an in vivo study of maximal axial... 

    Modelling of power-law fluid flow through porous media using smoothed particle hydrodynamics

    , Article Transport in Porous Media ; Volume 74, Issue 3 , 2008 , Pages 331-346 ; 01693913 (ISSN) Vakilha, M ; Manzari, M. T ; Sharif University of Technology
    2008
    Abstract
    The flow of non-Newtonian fluids through two-dimensional porous media is analyzed at the pore scale using the smoothed particle hydrodynamics (SPH) method. A fully explicit projection method is used to simulate incompressible flow. This study focuses on a shear-thinning power-law model (n < 1), though the method is sufficiently general to include other stress-shear rate relationships. The capabilities of the proposed method are demonstrated by analyzing a Poiseuille problem at low Reynolds numbers. Two test cases are also solved to evaluate validity of Darcy's law for power-law fluids and to investigate the effect of anisotropy at the pore scale. Results show that the proposed algorithm can... 

    Search for critical loading condition of the spine-A meta analysis of a nonlinear viscoelastic finite element model

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 8, Issue 5 , 2005 , Pages 323-330 ; 10255842 (ISSN) Wang, J. L ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2005
    Abstract
    The relative vulnerability of spinal motion segments to different loading combinations remains unknown. The meta-analysis described here using the results of a validated L2-L3 nonlinear viscoelastic finite element model was designed to investigate the critical loading and its effect on the internal mechanics of the human lumbar spine. A Box-Behnken experimental design was used to design the magnitude of seven independent variables associated with loads, rotations and velocity of motion. Subsequently, an optimization method was used to find the primary and secondary variables that influence spine mechanical output related to facet forces, disc pressure, ligament forces, annulus matrix... 

    Subcutaneous insulin administration by deep reinforcement learning for blood glucose level control of type-2 diabetic patients

    , Article Computers in Biology and Medicine ; Volume 148 , 2022 ; 00104825 (ISSN) Raheb, M. A ; Niazmand, V. R ; Eqra, N ; Vatankhah, R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Background: Type-2 diabetes mellitus is characterized by insulin resistance and impaired insulin secretion in the human body. Many endeavors have been made in terms of controlling and reducing blood glucose via the medium of automated controlling tools to increase precision and efficiency and reduce human error. Recently, reinforcement learning algorithms are proved to be powerful in the field of intelligent control, which was the motivation for the current study. Methods: For the first time, a reinforcement algorithm called normalized advantage function (NAF) algorithm has been applied as a model-free reinforcement learning method to regulate the blood glucose level of type-2 diabetic... 

    CFD simulation of thermal performance of hybrid oil-Cu-Al2O3 nanofluid flowing through the porous receiver tube inside a finned parabolic trough solar collector

    , Article Sustainable Energy Technologies and Assessments ; Volume 50 , 2022 ; 22131388 (ISSN) Samiezadeh, S ; Khodaverdian, R ; Doranehgard, M. H ; Chehrmonavari, H ; Xiong, Q ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, we perform numerical simulations to investigate the thermal and flow characteristics of a parabolic trough solar collector equipped with a porous receiver tube and internal longitudinal fins. The heat transfer medium is a synthetic oil-Cu-Al2O3 hybrid nanofluid. We examine the thermal characteristics of the nanofluid in response to variations in several system parameters. We find that at Reynolds numbers between 5 × 103 and 5 × 105, increasing the volume fraction of Cu nanoparticles can increase the temperature gain at the exit of the receiver tube by 6.4%. Furthermore, the temperature gradient in the cross-section of the collector increases as the direct normal solar... 

    Manipulating failure mechanism of rapid prototyped scaffolds by changing nodal connectivity and geometry of the pores

    , Article Journal of Biomechanics ; Volume 45, Issue 16 , 2012 , Pages 2866-2875 ; 00219290 (ISSN) Amirkhani, S ; Bagheri, R ; Zehtab Yazdi, A ; Sharif University of Technology
    2012
    Abstract
    The performance of cellular solids in biomedical applications relies strongly on a detailed understanding of the effects of pore topology on mechanical properties. This study aims at characterizing the failure mechanism of scaffolds based on nodal connectivity (number of struts that meet in joints) and geometry of the pores. Plastic models of scaffolds having the same relative density but different cubic and trigonal unit cells were designed and then fabricated via three dimensional (3-D) printing. Unit cells were repeated in different arrangements in 3-D space. An in-situ imaging technique was utilized to study the progressive deformation of the scaffold models. Different nodal... 

    Dynamic model for market-based capacity investment decision considering stochastic characteristic of wind power

    , Article Renewable Energy ; Volume 36, Issue 8 , August , 2011 , Pages 2205-2219 ; 09601481 (ISSN) Hasani Marzooni, M ; Hosseini, S. H ; Sharif University of Technology
    2011
    Abstract
    This paper proposes a decentralized market-based model for long-term capacity investment decisions in a liberalized electricity market with significant wind power generation. In such an environment, investment and construction decisions are based on price signal feedbacks and imperfect foresight of future conditions in electricity market. System dynamics concepts are used to model structural characteristics of power market such as, long-term firms' behavior and relationships between variables, feedbacks and time delays. For conventional generation units, short-term price feedback for generation dispatching of forward market is implemented as well as long-term price expectation for... 

    Modeling, simulation, and optimal initiation planning for needle insertion into the liver

    , Article Journal of Biomechanical Engineering ; Volume 132, Issue 4 , 2010 ; 01480731 (ISSN) Sharifi Sedeh, R ; Ahmadian, M. T ; Janabi Sharifi, F ; Sharif University of Technology
    2010
    Abstract
    Needle insertion simulation and planning systems (SPSs) will play an important role in diminishing inappropriate insertions into soft tissues and resultant complications. Difficulties in SPS development are due in large part to the computational requirements of the extensive calculations in finite element (FE) models of tissue. For clinical feasibility, the computational speed of SPSs must be improved. At the same time, a realistic model of tissue properties that reflects large and velocity-dependent deformations must be employed. The purpose of this study is to address the aforementioned difficulties by presenting a cost-effective SPS platform for needle insertions into the liver. The study... 

    Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding

    , Article Ultrasonics ; Volume 49, Issue 8 , 2009 , Pages 682-695 ; 0041624X (ISSN) Rajabi, M ; Hasheminejad, S. M ; Sharif University of Technology
    Abstract
    The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global... 

    Margination and adhesion of micro- and nanoparticles in the coronary circulation: A step towards optimised drug carrier design

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 17, Issue 1 , 2018 , Pages 205-221 ; 16177959 (ISSN) Forouzandehmehr, M ; Shamloo, A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Obstruction of left anterior descending artery (LAD) due to the thrombosis or atherosclerotic plaques is the leading cause of death worldwide. Targeted delivery of drugs through micro- and nanoparticles is a very promising approach for developing new strategies in clot-busting or treating restenosis. In this work, we modelled the blood flow characteristics in a patient-specific reconstructed LAD artery by the fluid–solid interaction method and based on physiological boundary conditions. Next, we provided a Lagrangian description of micro- and nanoparticles dynamics in the blood flow considering their Brownian motion and the particle–particle interactions. Our results state that the number of... 

    Effect of graphene oxide nanosheets on visible light-assisted antibacterial activity of vertically-aligned copper oxide nanowire arrays

    , Article Journal of Colloid and Interface Science ; Volume 521 , 2018 , Pages 119-131 ; 00219797 (ISSN) Kiani, F ; Ashari Astani, N ; Rahighi, R ; Tayyebi, A ; Tayebi, M ; Khezri, J ; Hashemi, E ; Rothlisberger, U ; Simchi, A ; Sharif University of Technology
    Academic Press Inc  2018
    Abstract
    In the present work, the effect of graphene oxide (GO) nanosheets on the antibacterial activity of CuO nanowire arrays under visible light irradiation is shown. A combined thermal oxidation/electrophoretic deposition technique was employed to prepare three-dimensional networks of graphene oxide nanosheets hybridized with vertically aligned CuO nanowires. With the help of standard antibacterial assays and X-ray photoelectron spectroscopy, it is shown that the light-activated antibacterial response of the hybrid material against gram-negative Escherichia coli is significantly improved as the oxide functional groups of the GO nanosheets are reduced. In order to explore the physicochemical... 

    Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shuffling-adaptive neuro fuzzy inference system and artificial neural networks

    , Article Chemosphere ; Volume 72, Issue 5 , 2008 , Pages 733-740 ; 00456535 (ISSN) Jalali-Heravi, M ; Kyani, A ; Sharif University of Technology
    2008
    Abstract
    The purpose of this study was to develop the structure-toxicity relationships for a large group of 268 substituted benzene to the ciliate Tetrahymena pyriformis using mechanistically interpretable descriptors. The shuffling-adaptive neuro fuzzy inference system (Shuffling-ANFIS) has been successfully applied to select the important factors affecting the toxicity of substituted benzenes to T. pyriformis. The results of the proposed model were compared with the model of linear-free energy response surface and also the principal component analysis Bayesian-regularized neural network (PCA-BRANN) trained using the same data. The presented model shows a better statistical parameter in comparison...