Loading...
Search for: computer-simulation
0.013 seconds
Total 1255 records

    Surveying the jagorood river's self-purification

    , Article 6th International Conference on Environmental Informatics, ISEIS 2007 ; 21-23 November , 2014 Nazari-Alavi, A ; Mirzai, M ; Sajadi, S. A. A ; Alamolhoda, A. A ; Sharif University of Technology
    Abstract
    the development and enlargement of city structure has caused the environmental problems on watershed of Latian dam which is one of the drinking water resourses of Tehran. The enlargement of Lavasan town and existence of an army garrison that it's effluents of treatment plant discharge to this river necessitate a water quality surveillance in entrance area of the dam. The present research includes the survey of this river's self-purification in the mentioned-above area. Numerical analysis is used in different methods to explain self- purification. Frist, we have the numerical analysis and analytical methods for a known sample in order to determine the accuracy and deviation between two... 

    A coupling atomistic-continuum approach for modeling mechanical behavior of nano-crystalline structures

    , Article Computational Mechanics ; Volume 54, Issue 2 , August , 2014 , Pages 269-286 ; ISSN: 01787675 Khoei, A. R ; Aramoon, A ; Jahanbakhshi, F ; Dormohammadi, H ; Sharif University of Technology
    Abstract
    In this article, a novel approach is presented for the concurrent coupling of continuum-atomistic model in the nano-mechanical behavior of atomic structures. The study is focused on the static concurrent multi-scale simulation, which is able to effectively capture the surface effects intrinsic in the molecular mechanics modeling. The Hamiltonian approach is applied to combine the continuum and molecular models with the same weight in the overlapping domain. A Lagrange-multiplier method is employed over the overlapping domain for coupling the continuum nodal displacement with the atomic lattice deformation. A multiple-step algorithm is developed to decouple the solution process in the atomic... 

    Statistical analysis of read static noise margin for near/sub-threshold SRAM cell

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Vol. 61, Issue. 12 , November , 2014 , pp. 3386-3393 ; ISSN: 15498328 Saeidi, R ; Sharifkhani, M ; Hajsadeghi, K ; Sharif University of Technology
    Abstract
    A fast statistical method for the analysis of the Read SNM of a 6 T SRAM cell in near/subthreshold region is proposed. The method is based on the nonlinear behavior of the cell. DIBL and body effects are thoroughly considered in the derivation of an accurate closed form solution for the Read Static Noise Margin (SNM) of the near/subthreshold SRAM cell. This method uses the state space equation to derive the Read SNM of the cell as a function of threshold voltage of cell transistors. This function shows the dependency of the Read SNM on sizing, VDD, temperature, and threshold voltage variations. It provides a fast reliability analysis for a cell array of a given size and a supply voltage. It... 

    Fourth body gravitation effect on the resonance orbit characteristics of the restricted three-body problem

    , Article Nonlinear Dynamics ; Vol. 76, Issue. 2 , Jan , 2014 , pp. 955-972 ; ISSN: 0924090X Pourtakdoust, S. H ; Sayanjali, M ; Sharif University of Technology
    Abstract
    In this paper, the gravitational effect of a fourth body on the resonance orbit defined in the restricted three-body problem (RTBP) is considered. In this regard, Resonance Hamiltonian of the RTBP and the Hamiltonian associated with the fourth gravitational body that perturbs the resonance orbit are computed. The Melnikov approach is utilized as a mean for the detection of chaos in resonance orbit under the influence of the fourth gravitation body. In addition, the numerical simulation of RTBP and bicircular four-body model, time-frequency analysis (TFA), and fast Lyapunov indicator (FLI) are performed to verify the results of the Melnikov approach. The results indicate that for the (2:1)... 

    Nonlinear dynamics of electrostatically actuated micro-resonator: Analytical solution by homotopy perturbation method

    , Article IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM ; July , 2014 , p. 1284-1289 Tajaddodianfar, F ; Yazdi, M. H ; Pishkenari, H. N ; Miandoab, E. M ; Sharif University of Technology
    Abstract
    Dynamic behavior of a electrostatically actuated MEMS resonator is investigated. A double clamped micro-beam under distributed DC and AC actuation is used. Corresponding single degree of freedom model is derived using Galerkin's decomposition method. Homotopy Perturbation Method (HPM) is implemented in order to derive analytical expression for frequency response of the micro-resonator. Comparison of the obtained results with the numerical simulations confirms that HPM agrees very well with numerical simulations for a wide range of parameters. Obtained analytical solution can be used for design and optimization of MEMS resonators  

    1H NMR based metabolic profiling in Crohn's disease by random forest methodology

    , Article Magnetic Resonance in Chemistry ; Vol. 52, issue. 7 , July , 2014 , p. 370-376 Fathi, F ; Majari-Kasmaee, L ; Mani-Varnosfaderani, A ; Kyani, A ; Rostami-Nejad, M ; Sohrabzadeh, K ; Naderi, N ; Zali, M. R ; Rezaei-Tavirani, M ; Tafazzoli, M ; Arefi-Oskouie, A ; Sharif University of Technology
    Abstract
    The present study was designed to search for metabolic biomarkers and their correlation with serum zinc in Crohn's disease patients. Crohn's disease (CD) is a form of inflammatory bowel disease that may affect any part of the gastrointestinal tract and can be difficult to diagnose using the clinical tests. Thus, introduction of a novel diagnostic method would be a major step towards CD treatment.Proton nuclear magnetic resonance spectroscopy ( 1H NMR) was employed for metabolic profiling to find out which metabolites in the serum have meaningful significance in the diagnosis of CD. CD and healthy subjects were correctly classified using random forest methodology. The classification model for... 

    Dynamic analysis of a rigid circular foundation on a transversely isotropic half-space under a buried inclined time-harmonic load

    , Article Soil Dynamics and Earthquake Engineering ; Vol. 63, issue , 2014 , pp. 184-192 Eskandari, M ; Ahmadi, S. F ; Khazaeli, S ; Sharif University of Technology
    Abstract
    The dynamic analysis of a surface rigid foundation in smooth contact with a transversely isotropic half-space under a buried inclined time-harmonic load is addressed. By virtue of the superposition technique, appropriate Green[U+05F3]s functions, and employing further mathematical techniques, solution of the mixed-boundary-value problem is expressed in terms of two well-known Fredholm integral equations. Two limiting cases of the problem corresponding to the static loading and isotropic medium are considered and the available results in the literature are fully recovered. For the static case, the results pertinent to both frictionless and bonded contacts are obtained and compared. With the... 

    Simulated and experimental investigation of stretch sheet forming of commercial AA1200 aluminum alloy

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Vol. 24, issue. 2 , February , 2014 , pp. 484-490 Esmaeilizadeh, R ; Khalili, K ; Mohammadsadeghi, B ; Arabi, H ; Sharif University of Technology
    Abstract
    The simulation and experimental results obtained from stretching test of a commercial sheet of AA1200 aluminum alloy were compared and evaluated. Uniaxial tensile tests were carried out to obtain the required input parameters for simulation. Finite element analysis of the forming process was carried out using Abaqus/Explicit by considering von Mises and Hill-1948 yield criteria. Simulation results including punch force and strain distribution were compared and validated with the experimental results. The results reveal that using anisotropic yield criteria for simulation has a better match in both cases with the experiments  

    Numerical simulations of cyclic behaviors in light alloys under isothermal and thermo-mechanical fatigue loadings

    , Article Materials and Design ; Vol. 56 , April , 2014 , pp. 245-253 ; ISSN: 02641275 Farrahi, G. H ; Shamloo, A ; Felfeli, M ; Azadi, M ; Sharif University of Technology
    Abstract
    In this article, numerical simulations of cyclic behaviors in light alloys are conducted under isothermal and thermo-mechanical fatigue loadings. For this purpose, an aluminum alloy (A356) which is widely used in cylinder heads and a magnesium alloy (AZ91) which can be applicable in cylinder heads are considered to study their stress-strain hysteresis loops. Two plasticity approaches including the Chaboche's hardening model and the Nagode's spring-slider model are applied to simulate cyclic behaviors. To validate obtained results, strain-controlled fatigue tests are performed under low cycle and thermo-mechanical fatigue loadings. Numerical results demonstrate a good agreement with... 

    Control of nonholonomic mobile manipulators for cooperative object transportation

    , Article Scientia Iranica ; Vol. 21, issue. 2 , 2014 , p. 347-357 Sayyaadi, H ; Babaee, M ; Sharif University of Technology
    Abstract
    In this paper, a methodology for transporting objects with a group of wheeled nonholonomic mobile manipulators is presented. A full dynamic model of a mobile manipulator with a three wheeled mobile base and a three DOF manipulator is derived using the Gibbs-Appell method. Since the dynamical equations of a mobile robot are highly nonlinear, an input-output linearization technique is used to control individual robots. Transporting the object is divided into two steps. First, the robots use a decentralized behavior-based method to approach and surround the object. Then, a virtual structure method is used to control the robots to transport the object cooperatively. A numerical simulation study... 

    Convolutional network-coded cooperation in multi-source networks with a multi-antenna relay

    , Article IEEE Transactions on Wireless Communications ; Vol. 13, issue. 8 , 2014 , pp. 4323-4333 ; ISSN: 15361276 Karbalayghareh, A ; Nasiri-Kenari, M ; Hejazi, M ; Sharif University of Technology
    Abstract
    We propose a novel cooperative transmission scheme called Convolutional Network-Coded Cooperation (CNCC) for a network including N sources, one M-antenna relay, and one common destination. The source-relay (S-R) channels are assumed to be Nakagami-m fading, while the source-destination (S-D) and the relay-destination (R-D) channels are considered Rayleigh fading. The CNCC scheme exploits the generator matrix of a good (N + M', N,v) systematic convolutional code, with the free distance of dfree designed over GF(2), as the network coding matrix which is run by the network's nodes, such that the systematic symbols are directly transmitted from the sources, and the parity symbols are sent by the... 

    Sampling efficiency in Monte Carlo based uncertainty propagation strategies: Application in seawater intrusion simulations

    , Article Advances in Water Resources ; Vol. 67, issue , 2014 , pp. 46-64 Rajabi, M. M ; Ataie-Ashtiani, B ; Sharif University of Technology
    Abstract
    The implementation of Monte Carlo simulations (MCSs) for the propagation of uncertainty in real-world seawater intrusion (SWI) numerical models often becomes computationally prohibitive due to the large number of deterministic solves needed to achieve an acceptable level of accuracy. Previous studies have mostly relied on parallelization and grid computing to decrease the computational time of MCSs. However, another approach which has received less attention in the literature is to decrease the number of deterministic simulations by using more efficient sampling strategies. Sampling efficiency is a measure of the optimality of a sampling strategy. A more efficient sampling strategy requires... 

    Hardware-in-the-loop optimization of an active vibration controller in a flexible beam structure using evolutionary algorithms

    , Article Journal of Intelligent Material Systems and Structures ; Vol. 25, issue. 10 , 2014 , p. 1211-1223 Nobahari, H ; Hosseini Kordkheili, S. A ; Afshari, S. S ; Sharif University of Technology
    Abstract
    In this study, active vibration control of a cantilevered flexible beam structure equipped with bonded piezoelectric sensor/actuators is investigated. The linear quadratic regulator technique together with an observer is adopted to design the controller as well as to provide the full-state feedback. Two different approaches are subsequently used for simultaneously integrated optimization of the controller and observer parameters. In the first approach, a linear experimental model of the system is obtained using identification techniques, and the optimization is then performed based on a computer simulation of the system. However, in the second approach, a hardware-in-the-loop optimization... 

    A novel approach towards control of exoskeletal systems as an assistive device for human's upper extremity

    , Article JICTEE 2014 - 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering ; 2014 Ghassemi, M ; Jahed, M ; Sharif University of Technology
    Abstract
    With increasing importance of exoskeletons as rehabilitation apparatuses, suitable and delicate control strategies has received much attention. In order to control the exoskeleton, there should be a complete understanding of torques produced by the limb itself which makes the musculoskeletal modeling of the limb essential but also complex. In addition, the musculoskeletal model can be used to discover the user's desired movement to control the exoskeleton. In this paper a complete musculoskeletal model for the elbow with two degrees of freedom is developed and simulated. Next the model is used to determine user's desired movement. Finally based on this evaluation, an exoskeleton model is... 

    Nonlinear dynamic modeling and simulation of an insect-like flapping wing

    , Article Applied Mechanics and Materials ; Vol. 555, issue , 2014 , p. 3-10 Banazadeh, A ; Taymourtash, N ; Sharif University of Technology
    Abstract
    The main objective of this paper is to present the modeling and simulation of open loop dynamics of a rigid body insect-like flapping wing. The most important aerodynamic mechanisms that explain the nature of the flapping flight, including added mass, rotational lift and delayed stall, are modeled. Wing flapping kinematics is described using appropriate reference frames and three degree of freedom for each wing with respect to the insect body. In order to simulate nonlinear differential equations of motion, 6DOF model of the insect-like flapping wing is developed, followed by an evaluation of the simulation results in hover condition  

    Development of a robust identifier for NPPs transients combining ARIMA model and ebp algorithm

    , Article IEEE Transactions on Nuclear Science ; Vol. 61, issue. 4 , August , 2014 , p. 2383-2391 Moshkbar-Bakhshayesh, K ; Ghofrani, M. B ; Sharif University of Technology
    Abstract
    This study introduces a novel identification method for recognition of nuclear power plants (NPPs) transients by combining the autoregressive integrated moving-average (ARIMA) model and the neural network with error back-propagation (EBP) learning algorithm. The proposed method consists of three steps. First, an EBP based identifier is adopted to distinguish the plant normal states from the faulty ones. In the second step, ARIMA models use integrated (I) process to convert non-stationary data of the selected variables into stationary ones. Subsequently, ARIMA processes, including autoregressive (AR), moving-average (MA), or autoregressive moving-average (ARMA) are used to forecast time... 

    A new approach to counter-current spontaneous imbibition simulation using Green element method

    , Article Journal of Petroleum Science and Engineering ; Vol. 119, issue , 2014 , p. 163-168 Bagherinezhad, A ; Pishvaie, M. R ; Sharif University of Technology
    Abstract
    This paper develops a two dimensional Green element simulator based on a "compatibility-equation" algorithm for simulation of counter-current spontaneous imbibition (COUCSI) process. The Green element method is a novel computational approach based on the boundary integral theory, which is regarded as a hybrid combination of both boundary and finite element methods. The superiority of the Green element method in modeling of two phase water/oil flow is at the core of this paper. The developed simulator within the context of this proposition is explored to predict the oil recovery from a one dimensional single matrix block. The results are then compared with the experimental data, and they... 

    Development of a water brake dynamometer with regard to the modular product design methodology

    , Article ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2014 ; Vol. 1, issue , July , 2014 , 25–27 Torabnia, S ; Banazadeh, A ; Sharif University of Technology
    Abstract
    This paper summarizes a research project in the field of design and manufacturing of a water brake dynamometer for power testing facilities. In the current study, the design process of a water brake with drilled rotor disks is presented. This process is examined against the development of a water brake for a 4MW gas turbine power measurement at 15,000 RPM speed. The proposed algorithm is based on vital assumptions such as; applying product designing issues and limited modular analysis that urges the disciplinary attitude and leads to the possibility of rapid development, easy maintenance and ease of access. The final scheme is divided into six disciplines with functional classification.... 

    Two-dimensional axisymmetric modelingof combustion in an iron ore sintering bed

    , Article Special Topics and Reviews in Porous Media ; Volume 4, Issue 4 , 2013 , Pages 299-313 ; 21514798 (ISSN) Lafmejani, S. S ; Emami, M. D ; Panjehpour, M ; Sohrabi, S ; Sharif University of Technology
    2013
    Abstract
    A twodimensional model, based on conservation of mass, momentum and energy equations, is represented in this paper in which the coke combustion process, for iron ore sintering in a packed bed, is simulated numerically. The aforementioned packed bed consists of iron ore, coke, limestone and moisture. The main objective of iron ore sintering is producing resistant agglomerates which can be used in blast furnaces. For this purpose, the sinter mixture is partially melted in high temperature and finally molten is allowed to cool. The molten production and subsequently, the solidification process are totally dependent on composition and components of mixture. Changes in bed porosity, caused by... 

    Design and implementation of current based vector control model of brushless doubly fed induction generator

    , Article 2013 3rd International Conference on Electric Power and Energy Conversion Systems, EPECS 2013 2013, Article number 6713022 ; 2013 ; 9781479906888 (ISBN) Moghaddam, F. K ; Gorginpour, H ; Hajbabaei, A ; Ouni, S ; Oraee, H ; Sharif University of Technology
    2013
    Abstract
    This paper is aimed at proposing a current based vector control model of the brushless doubly fed induction generator, modelling the presented control method, as well as implementing the proposed algorithm by DSP. In order to achieve the purpose, by presenting a detailed coupled circuit model of BDFIG, the vector model and then the current based vector control algorithm of the mentioned machine are acquired. The way of independent control of torque and power, and also the structure of speed controller amongst the proposed control model are discussed. Additionally, the concepts behind the proposed structure of the speed control system and the way of determining the model parameters are...