Loading...
Search for: control-systems
0.015 seconds
Total 1054 records

    Supervisory predictive control of power system load frequency control

    , Article International Journal of Electrical Power and Energy Systems ; Vol. 61, issue , October , 2014 , p. 70-80 Shiroei, M ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    Objective: The objective of this paper is to develop a hierarchical two-level power system load frequency control. Design: At the button level, standard PI controllers are utilized to control area's frequency and tie-line power interchanges. At the higher layer, model predictive control (MPC) is employed as a supervisory controller to determine the optimal set-point for the PI controllers in the lower layer. The proposed supervisory predictive controller computes the optimal set-points such that to coordinate decentralized local controllers. Blocking and coincidence point technology is employed to alleviate the computational effort of the MPC. In order to achieve the best closed loop... 

    Modeling and velocity control of a-shape microrobot with adaptive neural network controller

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 4A, issue , 2014 Nojoumian, M. A ; Shirazi, M. J ; Vossoughi, G. R ; Salarieh, H ; Sharif University of Technology
    Abstract
    Design and control of micro robots have been one of the interesting fields in robotics in recent years. One class of these micro robots is the legged robots. Various designs of legged robots have been proposed in the literature. All designs rely on friction for locomotion. In this paper dynamic model of a planar two-legged micro robot is presented using Luger friction model, and an adaptive neural controller used to control the robot to improve robustness and velocity of the robot. As mentioned earlier, friction plays an important role in locomotion of the legged robots. However, especially in legged micro robots, it is difficult to model the frictional force correctly since environmental... 

    Identification of 4D Lü hyper-chaotic system using identical systems synchronization and fractional adaptation law

    , Article Applied Mathematical Modelling ; Vol. 38, issue. 19-20 , 2014 , p. 4652-4661 Abedini, M ; Gomroki, M ; Salarieh, H ; Meghdari, A ; Sharif University of Technology
    Abstract
    In this paper, the parameters of a 4D Lü hyper-chaotic system are identified via synchronization of two identical systems. Unknown parameters of the drive system are identified by an adaptive method. Stability of the closed-loop system with one state feedback controller is studied by using the Lyapunov theorem. Also the convergence of the parameters to their true values is proved. Then a fractional adaptation law is applied to reduce the time of parameter convergence. Finally the results of both integer and fractional methods are compared  

    Fuzzy extended earned value management: A novel perspective

    , Article Journal of Intelligent and Fuzzy Systems ; Vol. 27, issue. 3 , 2014 , pp. 1393-1406 ; ISSN: 10641246 Salari, M ; Bagherpour, M ; Kamyabniya, A ; Sharif University of Technology
    Abstract
    In project management context, the Earned Value Management (EVM) is a well-known technique. Despite its popularity, the standard EVM suffers from the absence of some features that require being focused further on to make this method more efficient. This paper is addressing such features specifically the financial aspects of cost control system. These aspects that have been absent in the standard EVM include the time value of money, delay in client payment and contractor cash flow in uncertain environment. The proposed model here utilizes fuzzy sets to deal with the uncertain conditions of real projects. It attempts to extend the theoretical framework of EVM to evaluate and control the... 

    Adaptive impedance control of UAVs interacting with environment using a robot manipulator

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; Oct , 2014 , p. 636-641 Sayyaadi, H ; Sharifi, M ; Sharif University of Technology
    Abstract
    In this paper, a nonlinear adaptive impedance controller is proposed for UAVs equipped with a robot manipulator that interacts with environment. In this adaptive controller, by considering the nonlinear dynamics model of the UAV plus the robot manipulator in Cartesian coordinates, all of model parameters are considered to be completely uncertain and their estimation is updated using an adaptation law. The objective of the proposed adaptive controller is the control of manipulator's end-effector impedance in Cartesian coordinates to have a stable physical interaction. The adjustable Cartesian impedance is a desired dynamical relationship between the end-effector motion in Cartesian... 

    Optimal tracking control of an underactuated container ship based on direct Gauss Pseudospectral Method

    , Article Scientia Iranica ; Vol. 21, issue. 6 , 2014 Ghorbani, M. T ; Salarieh, H ; Sharif University of Technology
    Abstract
    In this paper, the problem of optimal tracking control for a container ship is addressed. The multi-input-multi-output nonlinear model of the S175 container ship is well established in the literature and represents a challenging problem for control design, where the design requirement is to follow a commanded maneuver at a desired speed. To satisfy the constraints on the states and the control inputs of the vessel nonlinear dynamics and minimize the heading error, a nonlinear optimal controller is formed. To solve the resulted nonlinear constrained optimal control problem, the Gauss Pseudospectral Method (GPM) is used to transcribe the optimal control problem into a Nonlinear Programming... 

    Real-time hybrid switching control of automotive cold start hydrocarbon emission

    , Article Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME ; Vol. 136, issue. 4 , January , 2014 Salehi, R ; Shahbakhti, M ; Hedrick, J. K ; Sharif University of Technology
    Abstract
    Reduction of cold start hydrocarbon (HC) emissions requires a proper compromise between low engine-out HC emission and fast light-off of the three way catalytic converter (TWC). In this paper, a hybrid switching system is designed and optimized for reducing HC emissions of a mid-sized passenger car during the cold start phase of FTP-75 (Federal Test Procedure). This hybrid system has the benefit of increasing TWC temperature during the early stages of the driving cycle by switching between different operational modes. The switching times are optimized to reduce the cumulative tailpipe HC of an experimentally validated automotive emission model. The designed hybrid system is tested in... 

    Speed control of servo drives with a flexible couplings using fractional order state feedback

    , Article PEDSTC 2014 - 5th Annual International Power Electronics, Drive Systems and Technologies Conference ; 2014 , p. 25-30 Tahami, F ; Moghadam, B. E ; Sharif University of Technology
    Abstract
    Using elastic couplings in servo motor drives may lead to torsional oscillations which are usually extinguished by reducing the bandwidth of the control system as a countermeasure. A high performance servo drive however needs fast dynamic characteristics. The conventional controllers, such as PI controllers, may not be able to improve the dynamic response while keeping the system stable. Fractional order modeling offers a good framework for flexible structures such as two mass servo drives. In this paper, the dynamic response and stability of two-mass servo drive is improved using a fractional order controller. The fractional order controller allows increasing the phase margin of the system... 

    Delay and throughput analysis of a two-way opportunistic network coding-based relay network

    , Article IEEE Transactions on Wireless Communications ; Vol. 13, issue. 5 , 2014 , p. 2863-2873 Amerimehr, M. H ; Ashtiani, F ; Sharif University of Technology
    Abstract
    This paper presents an analytical study of average delay and throughput in a two-way relay network exploiting network coding to exchange source packets, where arrival and departure of packets are stochastic. In this case, a fundamental problem for the relay node is whether to wait in order to obtain a coding opportunity, leading to reduction of the number of transmissions, or sending a packet (coded/uncoded) whenever it has a transmission opportunity, leading to reduction of the packet delay. In order to address the fundamental trade-off between packet delay and transmission power, we develop three network coding schemes based on power-delay constraint of the application. We devise a... 

    Spacecraft attitude and system identification via marginal modified unscented Kalman filter utilizing the sun and calibrated three-axis-magnetometer sensors

    , Article Scientia Iranica ; Vol. 21, issue. 4 , 2014 , p. 1451-1460 Kiani, M ; Pourtakdoust, S. H ; Sharif University of Technology
    Abstract
    This paper deals with the problems of attitude determination, parameter identification and reference sensor calibration simultaneously. An LEO satellite's attitude, inertia tensor as well as calibration parameters of Three-Axis-Magnetometer (TAM) including scale factors, misalignments and biases along three body axes are estimated during a maneuver designed to satisfy the condition of persistency of excitation. The advanced nonlinear estimation algorithm of Unscented Kalman Filter (UKF) is a good choice for nonlinear estimation problem of attitude determination, but its computational cost is considerably larger than the widespread low accurate Extended Kalman Filter. Reduced Sigma Point... 

    Model predictive orbit control of a Low Earth Orbit satellite using Gauss's variational equations

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Vol. 228, issue. 13 , Oct , 2014 , p. 2385-2398 Tavakoli, M. M ; Assadian, N ; Sharif University of Technology
    Abstract
    In this paper, an autonomous orbit control of a satellite in Low Earth Orbit is investigated using model predictive control. The absolute orbit control problem is transformed to a relative orbit control problem in which the desired states of the reference orbit are the orbital elements of a virtual satellite which is not affected by undesirable perturbations. The relative motion is modeled by Gauss's variational equations including J2 and drag perturbations which are the dominant perturbations in Low Earth Orbit. The advantage of using Gauss's variational equations over the Cartesian formulations is that not only the linearization errors are much smaller, but also each orbital element can be... 

    On the reliable transmission of correlated sources over two-relay network

    , Article 2013 IEEE Information Theory Workshop, ITW 2013 ; 2013 ; 9781479913237 (ISBN) Nasiraee, M ; Akhbari, B ; Ahmadian-Attari, M ; Aref, M. R ; Sharif University of Technology
    2013
    Abstract
    In this paper, we investigate reliable transmission of three correlated discrete memoryless sources over a two-relay network. In our considered model, one of the sources is available at the sender whereas, the other two sources are known to the first and the second relay. We present both joint and separate source-channel coding schemes, and derive the corresponding sets of sufficient conditions for reliable sources transmission. The manner of cooperation in both schemes is Decode-and-Forward strategy. In the joint approach, we generalize the correlation preserving mapping technique to our model using nested backward decoding. Our proposed separate approach is based on Slepian-Wolf source... 

    Computation time analysis of centralized and distributed optimization algorithms applied to automated irrigation networks

    , Article 2013 3rd Australian Control Conference, AUCC 2013, Fremantle, WA ; Nov , 2013 , Pages 263-269 ; 9781479924981 (ISBN) Farhadi, A ; Dower, P. M ; Cantoni, M ; Sharif University of Technology
    2013
    Abstract
    This paper compares the computation time of two algorithms for solving a structured constrained linear optimal control problem with finite horizon quadratic cost within the context of automated irrigation networks. The first is a standard centralized algorithm based on the active set method that does not exploit problem structure. The second is distributed and is based on a consensus algorithm, not specifically tailored to account for system structure. It is shown that there is a significant advantage in terms of computation overhead (the time spent computing the optimal solution) in using the second algorithm in large-scale networks. Specifically, for a fixed horizon length the computation... 

    Precise position control of shape memory alloy actuator using inverse hysteresis model and model reference adaptive control system

    , Article Mechatronics ; Volume 23, Issue 8 , December , 2013 , Pages 1150-1162 ; 09574158 (ISSN) Zakerzadeh, M. R ; Sayyaadi, H ; Sharif University of Technology
    2013
    Abstract
    Position control of Shape Memory Alloy (SMA) actuators has been a challenging topic during the last years due to their nonlinearities in the governing physical equations as well as their hysteresis behaviors. Using the inverse of phenomenological hysteresis model in order to compensate the input-output hysteresis behavior of these actuators shows the effectiveness of this approach. In this paper, in order to control the tip deflection of a large deformation flexible beam actuated by an SMA actuator wire, a feedforward-feedback controller is proposed. The feedforward part of the proposed control system, maps the beam deflection into SMA temperature, is based on the inverse of the generalized... 

    A new up-to level inventory model for deteriorating products with non-linear holding cost

    , Article IFAC Proceedings Volumes (IFAC-PapersOnline) ; 2013 , Pages 1702-1707 ; 14746670 (ISSN) ; 9783902823359 (ISBN) Sazvar, Z ; Rekik, Y ; Akbari Jokar, M. R ; Baboli, A ; Mirzapour Al E Hashem, S. M. J ; Sharif University of Technology
    2013
    Abstract
    Inventory management of deteriorating items faces major challenges by uncertain demand, uncertain lead time, perishability, and high customer service level requirements. So, this issue is extremely important in many corporations today. The periodic up-to level policy for deteriorating products under stochastic demand and stochastic lead time is not paid enough attention up to now. In this paper we propose a new approach to study inventory up-to level policy of deteriorating products under normal distributed demand and lead time by considering service level requirements. To model deterioration process, a non-linear increasing holding cost function is considered. After developing the... 

    Stabilisation of commensurate fractional-order polytopic non-linear differential inclusion subject to input non-linearity and unknown disturbances

    , Article IET Control Theory and Applications ; Volume 7, Issue 12 , 2013 , Pages 1624-1633 ; 17518644 (ISSN) Abooee, A ; Haeri, M ; Sharif University of Technology
    2013
    Abstract
    In this study, a fractional-order adaptive-sliding mode control (SMC) scheme is proposed to stabilise commensurate fractional-order polytopic non-linear differential inclusion systems containing sector and dead-zone nonlinearities in the control inputs and unknown bounded disturbances. The suggested control method is composed of fractional-order sliding surfaces, adaptive-SMC inputs and adaptation laws for unknown bounds of disturbances. The Lyapunov stability theorem is used to prove the stability of the closed-loop system. A practical system and two numerical examples are simulated to show the effectiveness and performance of the proposed control technique  

    Observer-based vibration control of non-classical microcantilevers using extended Kalman filters

    , Article Applied Mathematical Modelling ; January , 2015 ; 0307904X (ISSN) Vatankhah, R ; Karami, F ; Salarieh, H ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    In non-classical micro-beams, the strain energy of the system is determined by the non-classical continuum mechanics. In this study, we consider a closed-loop control methodology for suppressing the vibration of non-classical microscale Euler-Bernoulli beams with nonlinear electrostatic actuation. The non-dimensional form of the governing nonlinear partial differential equation of the system is introduced and converted into a set of ordinary differential equations using the Galerkin projection method. In addition, we prove the observability of the system and we design a state estimation system using the extended Kalman filter algorithm. The effectiveness and performance of the proposed... 

    Frequency response analysis for dynamic model identification and control of a ducted fan aerial vehicle in hover

    , Article Applied Mechanics and Materials, Neptun-Olimp ; Volume 332 , 2013 , Pages 56-61 ; 16609336 (ISSN) ; 9783037857335 (ISBN) Effati, M ; Banazadeh, A ; Sharif University of Technology
    2013
    Abstract
    System Identification is a key technology for the development and integration of modern engineering systems including unconventional flying vehicles. These systems are highly parametric with complex dynamics and nonlinearities. Ducted fans are special class of these vehicles that can take off vertically, hover and cruise at very low speed. In this paper, an exact equivalent linear system is found from the non-linear dynamic model of a ducted fan by use of frequency response identification. Here, power spectral density analysis is performed, using CIFER software, to evaluate the input-output responses in hover and to derive the transfer functions based on the coherence criterion. Then,... 

    Frequency domain identification of the Nomoto model to facilitate Kalman filter estimation and PID heading control of a patrol vessel

    , Article Ocean Engineering ; Volume 72 , November , 2013 , Pages 344-355 ; 00298018 (ISSN) Banazadeh, A ; Ghorbani, M. T ; Sharif University of Technology
    2013
    Abstract
    This paper presents a detailed frequency-domain system identification method applied to identify steering dynamics of a coastal patrol vessel using a data analysis software called CIFER. Advanced features such as the Chirp-Z transform and composite window optimization are used to extract high quality frequency responses. An accurate, robust and linear transfer function model is derived for yaw and roll dynamics of the vessel. To evaluate the accuracy of the identified model, time domain responses from a 45-45 zig-zag test are compared with the responses predicted by the identified model. The identified model shows excellent predictive capability and is well suited for simulation and... 

    Modeling and control of dissolved oxygen concentration in the fermentation of glucose to gluconic acid

    , Article Periodica Polytechnica: Chemical Engineering ; Volume 57, Issue 1-2 , 2013 , Pages 63-70 ; 03245853 (ISSN) Kazemi, M. A ; Bamdad, H ; Papari, S ; Yaghmaei, S ; Sharif University of Technology
    2013
    Abstract
    Fermentation systems are often highly nonlinear, with poorly understood dynamic behaviour of the reactor. In this work, mathematical modeling of the fermentation process based on aeration rate control was performed in a semi-batch airlift loop bioreactor. The bioconversion of glucose to gluconic acid by the Aspergillus niger strain was considered in an oxygen consuming system in the liquid phase. The proper kinetic model for the bioconversion of glucose to gluconic acid was investigated using experimental data from a 40 dm3reactor. Kinetic parameter estimation was used from the literature. The model was validated by experimental data and was compared with the Monod kinetic model. The...