Loading...
Search for: control-systems
0.015 seconds
Total 1054 records

    Hybrid modeling of quasi-resonant converters: A piecewise affine approach

    , Article 13th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2022, 1 February 2022 through 3 February 2022 ; 2022 , Pages 448-454 ; 9781665420433 (ISBN) Hasanisaadi, M ; Tahami, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    DC-DC quasi-resonant converters (QRC) have the advantage of reducing switching losses and electromagnetic interference (EMI) which are the main disadvantages of high frequency power converters. The control and stabilization of these converters have always been a challenge. Traditionally, the dynamical model of the QRC is obtained using state space averaging followed by linearization about an operating point. The major flaw of this method is that state variables have large variations; thus, the linearized averaged model is not valid. Therefore, it is necessary to obtain a more precise model for the aim of stability analysis and controller design. Due to semiconductors switching, QRCs are... 

    Neural network-based flight control systems: Present and future

    , Article Annual Reviews in Control ; Volume 53 , 2022 , Pages 97-137 ; 13675788 (ISSN) Emami, S.A ; Castaldi, P ; Banazadeh, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    As the first review in this field, this paper presents an in-depth mathematical view of Intelligent Flight Control Systems (IFCSs), particularly those based on artificial neural networks. The rapid evolution of IFCSs in the last two decades in both the methodological and technical aspects necessitates a comprehensive view of them to better demonstrate the current stage and the crucial remaining steps towards developing a truly intelligent flight management unit. To this end, in this paper, we will provide a detailed mathematical view of Neural Network (NN)-based flight control systems and the challenging problems that still remain. The paper will cover both the model-based and model-free... 

    Agent-based time delay margin in consensus of multi-agent systems by an event-triggered control method: Concept and computation

    , Article Asian Journal of Control ; 2022 ; 15618625 (ISSN) Hosseini, S.H ; Tavazoei, M. S ; Kuznetsov, N. V ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    This paper deals with defining the concept of agent-based time delay margin and computing its value in multi-agent systems controlled by event-triggered based controllers. The agent-based time delay margin specifying the time delay tolerance of each agent for ensuring consensus in event-triggered controlled multi-agent systems can be considered as complementary for the concept of (network) time delay margin, which has been previously introduced in some literature. In this paper, an event-triggered control method for achieving consensus in multi-agent systems with time delay is considered. It is shown that the Zeno behavior is excluded by applying this method. Then, in a multi-agent system... 

    Delay-Independent regulation of blood glucose for type-1 diabetes mellitus patients via an observer-based predictor feedback approach by considering quantization constraints

    , Article European Journal of Control ; Volume 63 , 2022 , Pages 240-252 ; 09473580 (ISSN) Golestani, F ; Tavazoei, M. S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Diabetes, as a widespread chronic disease, is caused by the increase of blood glucose concentration (BGC) due to pancreatic insulin production failure and/or insulin resistance in the body. The artificial pancreas (AP) known as a closed-loop insulin delivery control system consists of a glucose sensor for BGC measurement, a control algorithm for calculation of exogenous insulin delivery rate (IDR), and an insulin infusion pump. The AP provides a closed-loop glucose-insulin regulatory system for type-1 diabetes mellitus (T1DM) patients in order to effectively reduce the high BGC level. In this paper, we aim to design a controller in order to regulate the BGC of T1DM patients at its basal... 

    Finite-time stabilisation of a class of time-varying nonlinear systems by a mixed event-based and continuous-time strategy

    , Article International Journal of Systems Science ; Volume 53, Issue 3 , 2022 , Pages 526-537 ; 00207721 (ISSN) Ghazisaeedi, H.R ; Tavazoei, M. S ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, a mixed event-triggered and continuous-time control method is proposed, which can guarantee finite-time stabilisation of the fixed point in a class of time-varying nonlinear systems. Benefiting from an event-triggered framework, which is constructed based on the indefinite Lyapunov theory, the communication/computation costs in the transient time can be reduced by using the proposed method. In a special case, this method is converted to a fully event-triggered control strategy for asymptotic stabilisation of the fixed point in the considered class of time-varying nonlinear systems. The effectiveness of the proposed method is verified by numerical simulations. © 2021 Informa UK... 

    Reducing conservatism in robust stability analysis of fractional-order-polytopic systems

    , Article ISA Transactions ; Volume 119 , 2022 , Pages 106-117 ; 00190578 (ISSN) Abolpour, R ; Dehghani, M ; Tavazoei, M. S ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2022
    Abstract
    This paper studies the robust stability of the fractional-order (FO) LTI systems with polytopic uncertainty. Generally, the characteristic polynomial of the system dynamic matrix is not an affine function of the uncertain parameters. Consequently, the robust stability of the uncertain system cannot be evaluated by well-known approaches including LMIs or exposed edges theorem. Here, an over-parameterization technique is developed to convert the main characteristic polynomial into a set of local over-parameterized characteristic polynomials (LOPCPs). It is proved that the robust stability of LOPCPs implies the robust stability of the uncertain system. Then, an algorithm is proposed to explore... 

    On the assignability of LTI systems with arbitrary control structures

    , Article International Journal of Control ; Volume 95, Issue 8 , 2022 , Pages 2098-2111 ; 00207179 (ISSN) Babazadeh, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, the assignability of linear time-invariant (LTI) systems with respect to arbitrary control structures is addressed. It is well established that the closed-loop spectrum of an LTI system with an arbitrary control structure is confined to the set containing the fixed-modes of the system with respect to that control structure. However, the assignment of the closed-loop spectrum is not merely limited by the existence of fixed-modes in practical scenarios. The pole assignment may require excessive control effort or even become infeasible due to the presence of small perturbations in the system dynamics. To offer more insights in such more realistic scenarios, a continuous measure... 

    Dynamic control of supported macro/micro-tubes conveying magnetic fluid utilizing intelligibly designed axially functionally graded materials

    , Article International Journal of Computer Integrated Manufacturing ; Volume 35, Issue 4-5 , 2022 , Pages 345-358 ; 0951192X (ISSN) Du, J ; Mirtalebi, S. H ; Ahmadian, M.T ; Cao, Y ; Suhatril, M ; Assilzadeh, H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this study, dynamic modeling of an elbow axially functionally graded (AFG) macro/micro-tube carrying magnetic flow with different cross-sections is considered. Parametric optimization is performed for vibration suppression of such fluid-interaction systems. Implementing computer simulations, passive vibration control procedures, along with the effect of AFG materials and magnetic properties of the fluid as well as precisely manufactured geometry of the system, is investigated. It is assumed that the material characteristics of the system vary in the longitudinal direction based on exponential and power-law distribution profiles. Influence of the downstream inclination angle and... 

    Wind-tolerant optimal closed loop controller design for a domestic atmospheric research airship

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 6 , 2022 , Pages 2046-2066 ; 15397734 (ISSN) Amani, S ; Pourtakdoust, S. H ; Pazooki, F ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Airships are inherently sensitive to random atmospheric disturbances that could potentially make their data gathering and observation missions a formidable task. In this context robust closed loop feedback controllers are important. The present study is therefore focused on optimal feedback controller design of an indigenous domestically designed airship (DA) for added robustness against atmospheric disturbances. While the general airship six degrees of freedom (6DoF) governing equations of motion are mathematically nonlinear, one often needs to resort to local linearization methods to benefit from proven linear closed loop controller (CLC) design approaches. In this sense an optimal linear... 

    Multi-objective economic-statistical design of simple linear profiles using a combination of NSGA-II, RSM, and TOPSIS

    , Article Communications in Statistics: Simulation and Computation ; Volume 51, Issue 4 , 2022 , Pages 1704-1720 ; 03610918 (ISSN) Roshanbin, N ; Ershadi, M. J ; Niaki, S. T. A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    A multi-objective economic-statistical design is aimed in this article for simple linear profiles. In this design, the interval between two successive sampling intervals, the sample size and the number of adjustment points alongside, the parameters of the monitoring scheme are determined such that not only the implementation cost is minimized, but also the profile exhibits desired statistical performances. To this aim, three objective functions are considered in the multi-objective optimization model of the problem. The Lorenzen–Vance cost function is used to model the implementation cost as the first objective function to be minimized. The second objective function maximizes the in-control... 

    Attitude control of an underactuated satellite in presence of disturbance torque with optimal motion planning

    , Article Aerospace Science and Technology ; Volume 121 , 2022 ; 12709638 (ISSN) Mehrparwar Zinjanabi, A ; Nejat Pishkenari, H ; Salarieh, H ; Abdollahi, T ; Sharif University of Technology
    Elsevier Masson s.r.l  2022
    Abstract
    The failure of mechanical components is a common phenomenon in satellites. This failure can happen in the satellite attitude control system, which causes that the control system of the satellite becomes underactuated. There have been many attempts to control the orientation of underactuated satellites. However, in most studies, the inertia matrix of the satellite is assumed to be diagonal with respect to the body coordinate system, and no limitations on the amount of torque applied by the reaction wheels have been considered. In this paper, at first, it is attempted to control the satellite using the motion planning method. The satellite control inputs are assumed to be cubic spline with... 

    Attitude estimation and control based on modified unscented Kalman filter for gyro-less satellite with faulty sensors

    , Article Acta Astronautica ; Volume 191 , 2022 , Pages 134-147 ; 00945765 (ISSN) Pourtakdoust, S.H ; Mehrjardi, M. F ; Hajkarim, M. H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A modified unscented Kalman filter is presented to estimate the quaternion parameters as well as the angular velocities of a rigid gyro-less satellite under faulty sensor conditions. The task is carried out using the Sun sensor and magnetometers as attitude sensors with bounded noise and unknown fault(s). Following the presentation of the satellite attitude dynamics and filtering formulations, a new fault detection and isolation algorithm is proposed. The latter is based on a modified unscented Kalman filter structure for improved fault detection, sensor isolation, and attitude control (AC). A Backtracking Search Algorithm (BSA) is also used to design and optimize the PID controller gains,... 

    Effect of crystallographic texture and twinning on the corrosion behavior of Mg alloys: A review

    , Article Journal of Magnesium and Alloys ; Volume 10, Issue 2 , 2022 , Pages 313-325 ; 22139567 (ISSN) Gerashi, E ; Alizadeh, R ; Langdon, T. G ; Sharif University of Technology
    National Engg. Reaserch Center for Magnesium Alloys  2022
    Abstract
    Magnesium and its alloys have gained significant popularity due to their light weight and their potential for use as bioresorbable materials. However, their application is limited in practice due to their relatively poor corrosion resistance. Several methods are available for improving the corrosion resistance of Mg alloys for bio-applications such as using different coatings, alloying, and modifying the microstructural parameters such as the grain size and the crystallographic texture. This review provides a comprehensive summary of the effects of crystallographic texture and twinning, as one of the most important deformation mechanisms of Mg and Mg alloys, on the corrosion behavior.... 

    A framework for prescribed-time control design via time-scale transformation

    , Article IEEE Control Systems Letters ; Volume 6 , 2022 , Pages 1976-1981 ; 24751456 (ISSN) Shakouri, A ; Assadian, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This letter presents a unified framework for the design of prescribed-time controllers under time-varying input and state constraints for normal-form unknown nonlinear systems with uncertain input gain. The proposed approach is based on a time-domain mapping method by which any infinite-time system can be corresponded to a prescribed-time system and vice versa. It is shown that the design of a constrained nonasymptotic prescribed-time controller can be reduced to the asymptotic control design for an associated constrained infinite-time system. Faà di Bruno's formula and Bell polynomials are used for a constructive representation of the associated infinite-time system. The presented results...