Loading...
Search for: controllability
0.018 seconds
Total 5617 records

    Robust adaptive control of a flexible transmission system using multiple models

    , Article IEEE Transactions on Control Systems Technology, Piscataway, NJ, United States ; Volume 8, Issue 2 , 2000 , Pages 321-331 ; 10636536 (ISSN) Karimi, A ; Landau, L.D ; Sharif University of Technology
    IEEE  2000
    Abstract
    An application of the multiple models adaptive control based on switching and tuning to a flexible transmission system will be presented. This approach has been considered in order to assure high control performance in the presence of large load variation on the system. The advantages of the multiple models adaptive control system with respect to the classical adaptive control will be illustrated via the experimental results. It will also be shown that the robustness of the adaptive control system can be improved with the appropriate shaping of a sensitivity function. The use of a recently developed parameter estimation algorithm based on the minimization of the closed-loop output error in... 

    Chaos control in continuous mode of T-AFM systems using nonlinear delayed feedback via sliding mode control

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Volume 11 PART A , 2008 , Pages 201-208 ; ISBN: 079184305X Sadeghian, H ; Salaried, H ; Alasty, A ; Sharif University of Technology
    Abstract
    The taping mode Atomic Force Microscopic (T-AFM) can be assumed as a cantilever beam which its base is excited by a sinusoidal force and nonlinear potential interaction with sample. Thus the cantilever may cause chaotic behavior which decreases the performance of the sample topography. In order to modeling, using the galerkin method, the PDE equation is reduced to a single ODE equation which properly describing the continuous beam. In this paper a nonlinear delayed feedback control.is proposed to control.chaos in T-AFM system. Assuming model parameters uncertainties, the first order Unstable Periodic Orbits (UPOs) of the system is stabilized using the sliding nonlinear delayed feedback... 

    Compensation by fractional-order phase-lead/lag compensators

    , Article IET Control Theory and Applications ; Volume 8, Issue 5 , 2014 , Pages 319-329 ; ISSN: 17518644 Tavazoei, M. S ; Tavakoli Kakhki, M ; Sharif University of Technology
    Abstract
    This study deals with a generalised version of lead/lag compensators known as fractional-order lead/lag compensators. Exact and simple formulas are found for designing this introduced type of fractional-order compensators in order to provide the required magnitude and phase at a given frequency. Also, the region in the phase-magnitude plane, which is accessible by these compensators, is analytically found. Moreover, numerical examples and experimental results are presented to show the applicability of the achievements of this study in control system design  

    Energy optimization of field oriented six-phase induction motor drive

    , Article Advances in Electrical and Computer Engineering ; Volume 11, Issue 2 , 2011 , Pages 107-112 ; 15827445 (ISSN) Taheri, A ; Rahmati, A ; Kaboli, S ; Sharif University of Technology
    2011
    Abstract
    This paper deals with the efficiency optimization of Field Oriented Control (FOC) of a six-Phase Induction Motor (6PIM) by adaptive flux search control. The six-phase induction motor is supplied by Space Vector PWM (SVPWM) and voltage source inverter. Adaptive flux search controller is fast than ordinary search control technique and easy to implement. Adaptive flux Search Control (SC) technique decreases the convergence time by proper change of flux variation steps and increases accuracy of the SC technique. A proper loss model of 6PIM in conjunction with the proposed method is used. The six-phase induction machine has large zero sequence harmonic currents that can be reduced by SVPWM... 

    Robustness investigation of a ducted-fan aerial vehicle control, using linear, adaptive, and model predictive controllers

    , Article International Journal of Advanced Mechatronic Systems ; Volume 6, Issue 2-3 , 2015 , Pages 108-117 ; 17568412 (ISSN) Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    Inderscience Publishers  2015
    Abstract
    A comparison of three common controllers for stabilising a vertical take-off and landing air vehicle is presented. RMIT is a small sized tail-sitter ducted fan air vehicle with a particular configuration layout, multiple control surfaces, low weight, and high-speed flight capability. The main problem here is control effectiveness at low flight speeds and transition manoeuvres because of the inherent instability. In the current study, a comprehensive nonlinear model is firstly developed for RMIT, followed by a validation process. Subsequently, linear, adaptive and model predictive controllers are designed in vertical flight. Based on the simulation results, it is shown that the linear... 

    Comparing the stability regions for fractional-order PI controllers and their integer-order approximations

    , Article Proceedings of the IEEE Conference on Decision and Control, 15 December 2010 through 17 December 2010, Atlanta, GA ; 2010 , Pages 720-725 ; 01912216 (ISSN) ; 9781424477456 (ISBN) Rahimian, M. A ; Tavazoei, M. S ; Sharif University of Technology
    2010
    Abstract
    This paper proposes a scheme for computing the stable regions from which the parameters of a fractional-order PI controller can be selected. In particular, we extend a previously investigated method for plotting the stability regions of PIλ controllers to their integer-order approximations. Next we compare the two stability regions and derive their overlapping sections, which is referred to as the implementable stability region. In order for the final closed-loop system to be stable, the designer must choose the controller parameters from the overlapping section of the two stability regions. The devised scheme we believe can facilitate the design procedure for fractional-order PI... 

    Design and implementation of extended predictive functional control for boiler-turbine unit of power plant

    , Article 24th Mediterranean Conference on Control and Automation, 21 June 2016 through 24 June 2016 ; 2016 , Pages 131-134 ; 9781467383455 (ISBN) Amirabadi Farahani, M ; Haeri, M ; MCA ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    In this paper, a new model predictive controller is introduced to control a power unit process with three inputs and three outputs. This method is proposed to reduce the complexity of the required computation. In fact, the presented controller ensures achieving an acceptable performance in the presence of noise and disturbances and reduces the volume of calculations to control a complex and nonlinear boilerturbine process. The simulation results indicate that the implementation of the proposed controller requires less computing time while the performance degradation is not more than five percent  

    Robust adaptive fractional order proportional integral derivative controller design for uncertain fractional order nonlinear systems using sliding mode control

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 232, Issue 5 , 1 May , 2018 , Pages 550-557 ; 09596518 (ISSN) Yaghooti, B ; Salarieh, H ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    This article presents a robust adaptive fractional order proportional integral derivative controller for a class of uncertain fractional order nonlinear systems using fractional order sliding mode control. The goal is to achieve closed-loop control system robustness against the system uncertainty and external disturbance. The fractional order proportional integral derivative controller gains are adjustable and will be updated using the gradient method from a proper sliding surface. A supervisory controller is used to guarantee the stability of the closed-loop fractional order proportional integral derivative control system. Finally, fractional order Duffing–Holmes system is used to verify... 

    Polyethylene quality control in an industrial scale fluidized bed reactor

    , Article Indian Journal of Chemical Technology ; Volume 25, Issue 1 , January , 2018 , Pages 21-30 ; 0971457X (ISSN) Vahidi, O ; Shahrokhi, M ; Sharif University of Technology
    National Institute of Science Communication and Information Resources (NISCAIR)  2018
    Abstract
    Polymer quality control in an industrial scale polyethylene fluidized bed reactor has been addressed. Since online measurements of polymer properties (melt index and density) are not available, they must be controlled indirectly via other available measurements. In the present paper, two algebraic equations correlating polyethylene melt index and density with the measureable concentrations of chemical components are obtained. Having the desired polyethylene properties and using these correlations, desired concentrations of chemical components are calculated and used via corresponding control loops. By using the infrequently available polyethylene property measurements, the correlation... 

    Design of an stable GPC for nonminimum phase LTI systems

    , Article Wec 05: Fourth World Enformatika Conference, Istanbul, 24 June 2005 through 26 June 2005 ; Volume 6 , 2005 , Pages 88-91 ; 9759845857 (ISBN); 9789759845858 (ISBN) Yaghobi, M ; Haeri, M ; Sharif University of Technology
    2005
    Abstract
    The current methods of predictive controllers are utilized for those processes in which the rate of output variations is not high. For such processes, therefore, stability can be achieved by implementing the constrained predictive controller or applying infinite prediction horizon. When the rate of the output growth is high (e.g. for unstable nonminimum phase process) the stabilization seems to be problematic. In order to avoid this, it is suggested to change the method in the way that: first, the prediction error growth should be decreased at the early stage of the prediction horizon, and second, the rate of the error variation should be penalized. The growth of the error is decreased... 

    Applying robust predictive functional control to mass transmission benchmark

    , Article EUROCON 2005 - The International Conference on Computer as a Tool, Belgrade, 21 November 2005 through 24 November 2005 ; Volume I , 2005 , Pages 294-297 ; 142440049X (ISBN); 9781424400492 (ISBN) Soltanzadeh, A ; Haeri, M ; Sharif University of Technology
    IEEE Computer Society  2005
    Abstract
    Predictive functional controller originally developed based on a first order reference model. In this paper the related equation of the predictive functional control is derived for an arbitrary reference model and then a simple approach to tune different parameters of the controller is examined by applying the controller on a benchmark problem. Finally, the robustness of the design is improved using the so called Youla parameterization approach. © 2005 IEEE  

    Design aspects for feed-forward multiple-input active noise controllers

    , Article Iranian Journal of Science and Technology, Transaction B: Technology ; Volume 26, Issue 3 , 2002 , Pages 407-418 ; 03601307 (ISSN) Esmailzadeh, E ; Ohadi, A. R ; Sharif University of Technology
    Shiraz University  2002
    Abstract
    The use of adaptive feed-forward controllers has proven to be a very successful strategy for controlling noise and vibration in a variety of applications. One reason is that the feed-forward controller is an open loop controller, which can be designed to cancel the undesired noise in a position with any accuracy. However, the feed-forward controller requires an input signal, called a reference signal, correlated to the noise source. Consequently, a single reference controller can only reduce noise radiated from a single noise source. In many applications, there is a need to attenuate noise produced by several noise sources. In this paper, three different structures, single, modulating and... 

    Variable speed wind turbine power control: A comparison between multiple MPPT based methods

    , Article International Journal of Dynamics and Control ; Volume 10, Issue 2 , 2022 , Pages 654-667 ; 2195268X (ISSN) Nouriani, A ; Moradi, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Reducing the renewable energy costs is necessary for the competition with the fossil energies and control strategies have great impact on the efficiency of wind machines. In the wind turbine industry, a practical approach is to maximize the energy capture of a wind machine by optimizing the power coefficient in the under-rated situations. In this paper, with the main objective of maximizing the energy capture in the second region, four different control strategies are compared in the presence of uncertainties. The proposed control methods are compared based on their power capture and robustness against probable uncertainties in the structural and environmental parameters. A two-mass... 

    Robust multivariable predictive based load frequency control considering generation rate constraint

    , Article International Journal of Electrical Power and Energy Systems ; Volume 46, Issue 1 , March , 2013 , Pages 405-413 ; 01420615 (ISSN) Shiroei, M ; Toulabi, M. R ; Ranjbar, A. M ; Sharif University of Technology
    2013
    Abstract
    In this paper, a robust multivariable Model based Predictive Control (MPC) is proposed for the solution of load frequency control (LFC) in a multi-area power system. The proposed control scheme is designed to consider multivariable nature of LFC, system uncertainty and generation rate constraint, simultaneously. A constrained MPC is employed to calculate optimal control input including generation rate constraints. Economic allocation of generation is further ensured by modification of the predictive control objective function. To achieve robustness against system uncertainty and variation of parameters, a linear matrix inequality (LMI) based approach is employed. To validate the... 

    Geometric control of the brachiation robot using controlled Lagrangians method

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; 17 December , 2014 , Pages 706-710 Tashakori, S ; Vossoughi, G ; Yazdi, E. A ; Sharif University of Technology
    Abstract
    This paper studies a brachiation robot that is a long armed locomotion similar to apes. The robot has 2 revolute joints but only one of them is actuated. In this paper, after deriving dynamic model of the robot the Controlled Lagrangian (CL) method is used for stabilization. The matching conditions satisfied for the controller are derived and the extended λ-method is used to solve PDE's involved in the method of controlled lagrangian. Satisfactory controller's gains are chosen by PSO algorithm. Finally, feasibility of the developed controller is investigated by numerical simulations  

    Constrained tuning of two-parameter controllers: A centroid approach

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 226, Issue 5 , 2012 , Pages 685-698 ; 09596518 (ISSN) Rahimian, M. A ; Tavazoei, M. S ; Sharif University of Technology
    2012
    Abstract
    The problem of tuning a two-parameter controller has been formulated as finding the centroid of the admissible region specified by the set of constraints that the controller should satisfy. The constraints can be as general as the closed-loop system stability or they may include several requirements on various stability, sensitivity, or performance measures. The design of stabilizing proportional-derivative (PD) controllers using the centroid of the stability region in the controller parameter space is considered as a case study. To this end, analytical formulas are derived to describe the stability boundaries of a class of integrating time delay systems, the stability region of which has a... 

    Controlling Atrial fibrillation using Cohen's model

    , Article 2011 18th Iranian Conference of Biomedical Engineering, ICBME 2011, 14 December 2011 through 16 December 2011 ; December , 2011 , Pages 60-63 ; 9781467310055 (ISBN) Aghajari, S ; Bahrami, F ; Sharif University of Technology
    2011
    Abstract
    Drug administration using infusion pumps can find application in treating patients with arrhythmias. These pumps can obviate the need to use drugs several times a day and automatically adapt the dosage to patient situation. Considering the importance of administration of right dosage, a perfect-controlled pump is needed to approach this goal. This paper focuses on controlling Atrial fibrillation (AF) arrhythmia. The abnormal heart rhythm that affects RR interval sequence and there have been some attempts to model these effects. One of these models is proposed by Cohen and colleges. Searching through the variables of this model, selecting the potential control variable (the one that its... 

    Observer-based adaptive fuzzy controller for nonlinear systems with unknown control directions and input saturation

    , Article Fuzzy Sets and Systems ; May , 2016 ; 01650114 (ISSN) Askari, M. R ; Shahrokhi, M ; Khajeh Talkhoncheh, M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    This paper addresses design of an observer-based adaptive fuzzy controller for a class of single-input-single-output (SISO) nonlinear systems with unknown dynamics subject to input nonlinearity and unknown direction. The proposed controller is singularity free. A high-gain observer is designed to estimate the unmeasured states, and the Lipschitz condition for proving boundedness of the estimated states is relaxed. The Nussbaum function is used to handle the unknown virtual control directions and the backstepping technique has been applied for controller design. It is proved that all closed loop signals are semi-globally uniformly ultimately bounded (SGUUB) and the output tracking error... 

    Adaptive optimal multi-critic based neuro-fuzzy control of MIMO human musculoskeletal arm model

    , Article Neurocomputing ; Volume 173 , 2016 , Pages 1529-1537 ; 09252312 (ISSN) Balaghi, M. H. E ; Vatankhah, R ; Broushaki, M ; Alasty, A ; Sharif University of Technology
    Elsevier 
    Abstract
    Human bodies use the electrical currents to make the muscles move. Disconnection of the electrical signals between the brain and the muscles as a result of spinal cord injuries, causes paralysis below the level of injury. Functional electrical stimulation (FES) is used to stimulate the peripheral nerves of the disabled limbs. The level of these electrical signals should be selected so that the desired tasks are done successfully. Applying the appropriate controller which can result a human like behaviour and the accomplishment of the desired tasks has become a significant research area. In this paper, the multi-input multi-output (MIMO) musculoskeletal model of human arm with six muscles is... 

    Decentralized load sharing in a low-voltage direct current microgrid with an adaptive droop approach based on a superimposed frequency

    , Article IEEE Journal of Emerging and Selected Topics in Power Electronics ; Volume 5, Issue 3 , 2017 , Pages 1205-1215 ; 21686777 (ISSN) Peyghami, S ; Mokhtari, H ; Blaabjerg, F ; Sharif University of Technology
    Abstract
    Conventional droop methods for load sharing control in low-voltage direct current microgrids suffer from poor power sharing and voltage regulation, especially in the case when operating many dc sources with long feeders. Hence, the communication-based approaches are employed to improve the load sharing accuracy and voltage regulation. To avoid using such an infrastructure and the corresponding effects on the reliability and stability, an adaptive droop controller based on a superimposed frequency is proposed in this paper. Load sharing accuracy is improved by adapting the droop gains utilizing an introduced ac power. The secondary controller locally estimates and compensates the voltage drop...