Loading...
Search for: controlled-drug-delivery
0.016 seconds
Total 114 records

    Theoretical study of diffusional release of a dispersed solute from cylindrical polymeric matrix: A novel configuration for providing zero-order release profile

    , Article Applied Mathematical Modelling ; Volume 73 , 2019 , Pages 136-145 ; 0307904X (ISSN) Khorrami Jahromi, A ; Shieh, H ; Saadatmand, M ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    In the context of controlled release drug delivery approaches, the systems providing zero-order release kinetics have special advantages. Through employing these systems, drug concentration could be maintained within the therapeutic window over release time; thus maximum effectiveness alongside minimized side effects of the drug are achieved. However, obtaining zero-order drug release is extremely challenging. One of the main obstacles is the fact that implemented devices should be designed to overcome the decreasing mass transfer driving force, especially, in polymeric systems in which diffusion mechanism is dominant. In this study, we developed a new configuration of a polymeric matrix... 

    Graphene oxide-l-arginine nanogel: A pH-sensitive fluorouracil nanocarrier

    , Article Biotechnology and Applied Biochemistry ; Volume 66, Issue 5 , 2019 , Pages 772-780 ; 08854513 (ISSN) Malekimusavi, H ; Ghaemi, A ; Masoudi, G ; Chogan, F ; Rashedi, H ; Yazdian, F ; Omidi, M ; Javadi, S ; Haghiralsadat, B. F ; Teimouri, M ; Faal Hamedani, N ; Sharif University of Technology
    Wiley-Blackwell Publishing Ltd  2019
    Abstract
    Nowadays, putting forward an accurate cancer therapy method with minimal side effects is an important topic of research. Nanostructures, for their ability in controlled and targeted drug release on specific cells, are critical materials in this field. In this study, a pH-sensitive graphene oxide-l-arginine nanogel was synthesized to carry and release 5-fluorouracil. Optimized conditions using statistical analysis, based on the maximum relative viscosity of nanogel, were evaluated: 5.489 for the concentration of l-arginine and 2.404 for pH. The prepared nanogels were characterized using scanning electron microscope and transmission electron microscope images and Fourier-transform infrared... 

    Adaptive control strategy for treatment of hepatitis C infection

    , Article Industrial and Engineering Chemistry Research ; Volume 58, Issue 33 , 2019 , Pages 15262-15270 ; 08885885 (ISSN) Zeinali, S ; Shahrokhi, M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    In this work, an efficient treatment strategy for hepatitis C disease using interferon (IFN) has been proposed on the basis of the back-stepping control technique. The basic model of the hepatitis C virus (HCV) has been considered for controller design. To tackle the problem of model parameter variations, the adaptive version of the back-stepping method has been utilized. For applying the proposed treatment, all states should be available while only the viral load is measured. To solve this problem, a nonlinear Luenberger-like observer has been designed to estimate the unmeasured states. In the proposed treatment, limitation of the drug efficacy has been taken into account. Asymptotical... 

    Smart magnetic self-assembled micelle: an effective nanocarrier for thermo-triggered paclitaxel delivery

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 68, Issue 12 , 2019 , Pages 741-749 ; 00914037 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Dastanpour, L ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    Magnetic micelle nanoparticles with thermoresponsive behavior were designed for thermo-triggered paclitaxel delivery. For this purpose, thermoresponsive triblock copolymer poly(N-isopropyl acrylamide)-b-polycaprolactone-b-poly(N-isopropyl acrylamide) was prepared. The magnetic micelle was formed by self-assembly of triblock copolymer on the magnetite which was coated by oleic acid. The size of the magnetic micelle was between 30–40 nm reported by transmission electron microscopy. Also, dynamic light scattering indicated the hydrodynamic diameter was thermal dependent. Moreover, the drug release profile showed thermo-triggered release of paclitaxel. Thus, the smart nanocarrier has potential... 

    Simultaneous controlled release of 5-FU, DOX and PTX from chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX triaxial nanofibers for breast cancer treatment in vitro

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 179 , 2019 , Pages 495-504 ; 09277765 (ISSN) Habibi Jouybari, M ; Hosseini, S ; Mahboobnia, K ; Boloursaz, L. A ; Moradi, M ; Irani, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the present study, the tri-layer nanofibers were synthesized via triaxial electrospinning process to control the sustained delivery of Doxorubicin (DOX), Paclitaxel (PTX) and 5- fluorouracil (5-FU) anticancer drugs from nanofibers. The 5-FU molecules were incorporated into the core solution (chitosan/polyvinyl alcohol (CS/PVA)) to fabricate the CS/PVA/5-FU inner layer of nanofibers. The intermediate layer was prepared from poly(lactic acid)/chitosan (PLA/CS) nanofibers. The DOX and PTX molecules were initially loaded into the g-C3N4 nanosheets and following were incorporated into the PLA/CS solution to fabricate the outer layer of nanofibers. The synthesized nanosheets and nanofibers were... 

    Curcumin-Loaded Starch Micro/Nano particles for biomedical application: the effects of preparation parameters on release profile

    , Article Starch/Staerke ; Volume 71, Issue 5-6 , 2019 ; 00389056 (ISSN) Dehghan Baniani, D ; Zahedifar, P ; Bagheri, R ; Solouk, A ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    Although curcumin is highly cytotoxic against cancer cells, its hydrophobicity and fast degradation at physiological pH limit its effective practical application. To prevent such limitations, inexpensive curcumin-loaded starch particles are synthesized in this research. Particles are prepared by water-in-oil (W/O) miniemulsion technique and an adsorption method is used for curcumin loading. Also, encapsulation efficiency (%EE) is improved by using pluronic F-127 in the drug solution. Particles are characterized, swelling studies are performed, and MTT assays against human adipose mesenchymal stem cells (hAMSCs) and MG-63 cells are utilized for investigations. Results indicate that... 

    Nonlinear composite adaptive control of cancer chemotherapy with online identification of uncertain parameters

    , Article Biomedical Signal Processing and Control ; Volume 49 , 2019 , Pages 360-374 ; 17468094 (ISSN) Sharifi, M ; Moradi, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A new composite adaptive control strategy is developed for both of the reduction of cancer tumor volume and the online identification of tumor parameters during the drug delivery process in chemotherapy. This control strategy is developed for three different nonlinear mathematical cell-kill models of the cancer tumor including the log-kill hypothesis, Norton-Simon hypothesis and Emax hypothesis. All of these models are considered to have fully parametric uncertainties. The stability, tracking convergence and parameters identification convergence during the chemotherapy process are proved using the Lyapunov method. For the first time, the parameters identification of the uncertain... 

    Synthesis and characterization of magnetic hybrid nanomaterials via RAFT polymerization: A pH sensitive drug delivery system

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 174 , 2019 , Pages 153-160 ; 09277765 (ISSN) Pourjavadi, A ; Kohestanian, M ; Shirzad, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Herein, a facile and versatile method for the synthesis of a novel magnetic nanocarrier via surface- initiated reversible addition-fragmentation chain transfer (RAFT) polymerization is introduced. At first, RAFT agent was successfully attached to the surface of Fe 3 O 4 nanoparticles and, then, poly (glycidyl methacrylate) (PGMA) chains were grown and anchored onto the surface of Fe 3 O 4 nanoparticles. At the end, hydrazine (Hy) groups were introduced to the PGMA chains via reaction between epoxy rings and hydrazine molecules. Doxorubicin (DOX) was covalently conjugated to the prepared nanocarrier (Fe 3 O 4 @PGMA@Hy) through a hydrazone linkage. The in vitro drug release of Fe 3 O 4... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) ; https://iopscience.iop.org/article/10.1088/2053-1591/ab6c98 Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Curcumin incorporated PVA-borax dual delivery hydrogels as potential wound dressing materials—Correlation between viscoelastic properties and curcumin release rate

    , Article Journal of Applied Polymer Science ; Volume 135, Issue 45 , 2018 ; 00218995 (ISSN) Rezvan, G ; Pircheraghi, G ; Bagheri, R ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Poly(vinyl alcohol) (PVA) is a biocompatible polymer which can be physically crosslinked by Borax to form hydrogel. PVA-Borax (PB) hydrogel is a promising candidate for drug delivery system. Therefore, it is necessary to find the quantitative relationship between drug release rate and network structure of PB hydrogels to predict and control drug release rate. In this work, at first step the optimum ratio of Borax: PVA was determined by studying the interactions between PVA chains and Borax molecules by means of Fourier transform infrared spectroscopy, while viscoelastic properties of prepared PB hydrogels were measured in the oscillatory shear flow field. In the following, curcumin as a... 

    Graphene oxide in generation of nanobubbles using controllable microvortices of jet flows

    , Article Carbon ; Volume 138 , 2018 , Pages 8-17 ; 00086223 (ISSN) Jannesari, M ; Akhavan, O ; Madaah Hosseini, H. R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Spontaneous generation of nanobubbles (NBs) was developed by using a controllable platform of superfast microvortices, based on turbulent jet flows in the presence of graphene oxide (GO) sheets. Very high energy dissipation rates through discharging warm water into cold N2 aqueous solutions resulted in creation of micro/submicro-vortices. Shear stresses in these domains generated gas local supersaturations, leading to the formation of high concentration (∼109 mL−1) of stable NBs. Introducing GO sheets into the microvortex system resulted in effective manipulation of NBs by providing energetically favorable sites for prompt heterogeneous nucleation as well as stronger shear rate fluctuations.... 

    Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work?

    , Article Biotechnology Advances ; Volume 36, Issue 4 , 2018 , Pages 968-985 ; 07349750 (ISSN) Farjadian, F ; Moghoofei, M ; Mirkiani, S ; Ghasemi, A ; Rabiee, N ; Hadifar, S ; Beyzavi, A ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as “S-layer” bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g.... 

    Dual-sensitive hydrogel nanoparticles based on conjugated thermoresponsive copolymers and protein filaments for triggerable drug delivery

    , Article ACS Applied Materials and Interfaces ; Volume 10, Issue 23 , 17 May , 2018 , Pages 19336-19346 ; 19448244 (ISSN) Ghaffari, R ; Eslahi, N ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    In this study, novel hydrogel nanoparticles with dual triggerable release properties based on fibrous structural proteins (keratin) and thermoresponsive copolymers (Pluronic) are introduced. Nanoparticles were used for curcumin delivery as effective and safe anticancer agents, the hydrophobicity of which has limited their clinical applications. A drug was loaded into hydrogel nanoparticles by a single-step nanoprecipitation method. The drug-loaded nanoparticles had an average diameter of 165 and 66 nm at 25 and 37 °C, respectively. It was shown that the drug loading efficiency could be enhanced through crosslinking of the disulfide bonds in keratin. Crosslinking provided a targeted release... 

    Margination and adhesion of micro- and nanoparticles in the coronary circulation: A step towards optimised drug carrier design

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 17, Issue 1 , 2018 , Pages 205-221 ; 16177959 (ISSN) Forouzandehmehr, M ; Shamloo, A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Obstruction of left anterior descending artery (LAD) due to the thrombosis or atherosclerotic plaques is the leading cause of death worldwide. Targeted delivery of drugs through micro- and nanoparticles is a very promising approach for developing new strategies in clot-busting or treating restenosis. In this work, we modelled the blood flow characteristics in a patient-specific reconstructed LAD artery by the fluid–solid interaction method and based on physiological boundary conditions. Next, we provided a Lagrangian description of micro- and nanoparticles dynamics in the blood flow considering their Brownian motion and the particle–particle interactions. Our results state that the number of... 

    Loading drug on nanostructured Ti6Al4V-HA for implant applications

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 31, Issue 8 , 2018 , Pages 1159-1165 ; 1728144X (ISSN) Abbaspour, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2018
    Abstract
    Arrayed Ti6Al4V nanotubes (TNT) coated with hydroxyapatite (HA) were synthesized via electrochemical anodization method. Paracetamol was loaded onto TNT-HA electrode. Effects of anodization, nanotube formation and hydroxyapatite deposition on sorption and release of the drug were investigated. Saturation time of paracetamol on the anodized samples was 30% shorter than the hydroxyapatite-coated samples. Release behavior of the loaded drug was studied by (a) plunging the probe into phosphate buffered saline (PBS), (b) sampling the drug-loaded PBS at different times and (c) analyzing the solution via ultraviolet-visible (UV-vis) spectroscopy. Results showed that HA electrodes hold higher... 

    Robust adaptive Lyapunov-based control of hepatitis B infection

    , Article IET Systems Biology ; Volume 12, Issue 2 , April , 2018 , Pages 62-67 ; 17518849 (ISSN) Aghajanzadeh, O ; Sharifi, M ; Tashakori, S ; Zohoor, H ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    A new robust adaptive controller is developed for the control of the hepatitis B virus (HBV) infection inside the body. The non-linear HBV model has three state variables: uninfected cells, infected cells and free viruses. A control law is designed for the antiviral therapy such that the volume of infected cells and the volume of free viruses are decreased to their desired values which are zero. One control input represents the efficiency of drug therapy in inhibiting viral production and the other control input represents the efficiency of drug therapy in blocking new infection. The proposed controller ensures the stability and robust performance in the presence of parametric and... 

    Smart magnetic self-assembled micelle: an effective nanocarrier for thermo-triggered paclitaxel delivery

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 68, 2019 - Issue 12 , October , 2018 , Pages 741-749 ; 00914037 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Dastanpour, L ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Magnetic micelle nanoparticles with thermoresponsive behavior were designed for thermo-triggered paclitaxel delivery. For this purpose, thermoresponsive triblock copolymer poly(N-isopropyl acrylamide)-b-polycaprolactone-b-poly(N-isopropyl acrylamide) was prepared. The magnetic micelle was formed by self-assembly of triblock copolymer on the magnetite which was coated by oleic acid. The size of the magnetic micelle was between 30–40 nm reported by transmission electron microscopy. Also, dynamic light scattering indicated the hydrodynamic diameter was thermal dependent. Moreover, the drug release profile showed thermo-triggered release of paclitaxel. Thus, the smart nanocarrier has potential... 

    Drug delivery systems and materials for wound healing applications

    , Article Advanced Drug Delivery Reviews ; Volume 127 , 2018 , Pages 138-166 ; 0169409X (ISSN) Saghazadeh, S ; Rinoldi, C ; Schot, M ; Saheb Kashaf, S ; Sharifi, F ; Jalilian, E ; Nuutila, K ; Giatsidis, G ; Mostafalu, P ; Derakhshandeh, H ; Yue, K ; Swieszkowski, W ; Memic, A ; Tamayol, A ; Khademhosseini, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug... 

    Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems

    , Article Critical Reviews in Biotechnology ; Volume 38, Issue 1 , 2018 , Pages 47-67 ; 07388551 (ISSN) Malekzad, H ; Mirshekari, H ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Baniasadi, F ; Sharifi Aghdam, M ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble...