Loading...
Search for: controlled-release
0.007 seconds

    Simulation of Optimum Nutrition in Bioreactors

    , M.Sc. Thesis Sharif University of Technology Radfar, Marjan (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor) ; Mehrvar, Mehrab (Supervisor)
    Abstract
    In this study, a semi-structured model for the growth and production of lactase in an aerated bioreactor by Kluyveromyces marxianus, growing on cheese whey, was developed. Three modes of culture, consisting of batch, fed-batch and a controlled-release system were investigated. Modeling was based on three metabolic pathways, representing the growth of Kluyveromyces marxianus. Lactose and oxygen consumption, cell growth, and also lactase and ethanol production rates were determined in the model. Induction was considered as the governing mechanism for enzyme production. The model showed good agreement with the experimental data in batch and fed-batch cultures. Controlled-release system is a... 

    Preparation of Thermosensitive Polymer Nanoparticles to Apply in Smart Enhanced Oil Recovery Process

    , Ph.D. Dissertation Sharif University of Technology Tamsilian, Yousef (Author) ; Ramazani Saadatabadi, Ahmad (Supervisor) ; Ayatollahi, Shahabeddin (Supervisor) ; Masihi, Mohsen (Co-Advisor)
    Abstract
    With the decline in oil discoveries during the last decades, it is believed that enhanced oil recovery (EOR) technologies will play a key role to meet the energy demand in coming years. Polymer flooding has been commonly used worldwide as one of the EOR processes. Literature reviews show that the active water-soluble polymers have a number of limitations related to their surface absorption, undesirable plugging, polymer concentration limitation,expensive, and low thermal, mechanical, bacterial, and salt tolerance. Up to now, five different polymer categories (i.e. polyacrylamide, hydrolyzed polyacrylamide, acrylamidebased resistant copolymers, associative copolymers, and thermoassociative... 

    Design and Fabrication of Bioactive Nano Fibrous Scaffold for Central Nervous Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Rasti Boroojeni, Fatemeh (Author) ; Mashayekhan, Shohreh (Supervisor) ; Abbaszadeh, Hojjatollah (Supervisor) ; Hasannejad, Zahra (Co-Advisor)
    Abstract
    A system of electrospun scaffold containing drug-loaded chitosan nanoparticles was introduced for using in spinal cord tissue engineering. In spinal cord injury treatment, the formation of glial scar after injury which contains proteoglycans and activate glial cells should be avoided. In this study, the release of Dexamethasone sodium phosphate (DEXP) as a steroid anti-inflammatory agent from electrospun nanofiber composite containing chitosan nanoparticles was investigated. DEXP is believed to act through its glucocorticoid receptors found in most neurons and glial cells. These receptors’ pathways are involved in the inhibition of astrocyte proliferation and microglial activation.... 

    Co-Microencapsulation of Folic Acid and Iron

    , M.Sc. Thesis Sharif University of Technology Aali, Fatemeh (Author) ; Alemzadeh, Iran (Supervisor) ; Vossough, Manouchehr (Supervisor)
    Abstract
    This study aimed to prepare a type of microcapsule that microencapsulates folic acid and iron at the same time and protects these two substances against environmental and gastrointestinal conditions. Simultaneous release of these two nutrients has dual health properties and improves the efficiency of folic acid microencapsulation. In this study, biocomposites were formed containing alginate, pectin, and carboxymethylcellulose, and the microcapsules were synthesized by the ionization of calcium-alginate ions. Biocomposite optimization mixture with 13 experiments using experimental design software, optimal combination design method based on repopulation separator, restoring folic acid... 

    Synthesis, Characterization and Application of Inorganic Nanosystems based on Biocompatible and Highly Tunable Materials for Targeted Delivery and Release of Gene and Drug

    , Ph.D. Dissertation Sharif University of Technology Rabiee, Navid (Author) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    In this dissertation, an attempt has been made to prepare a library from most of the inorganic and organic compounds in order to strengthen the use of nanosystems for the purpose of controlled delivery and release of drugs and genetic material. In this regard, a complete set of compounds based on metal nanoparticles, layered double hydroxides, metal-organic frameworks, graphene oxide and carbon nanotubes were designed, synthesized and characterized, and nanocomposites and hybrids of them based on palladium, zinc, copper and nickel were designed as well. The nano-stable system is designed with positive surface potential, very low cytotoxicity, biodegradability and acceptable environment as... 

    Preparation of Host-Guest Hydrogels Responsive to Environmental Stimuli based on Diazo Compounds for Drug Release

    , M.Sc. Thesis Sharif University of Technology Yousefi Adlsadabad, Samaneh (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Conventional chemotherapy methods impact both normal and cancerous cells; therefore, it is essential to design novel drug delivery systems in order to reduce drugs’ side effects. Having high retention time in blood and the capability of crossing blood-brain barriers are the characteristics of nano-scaled drug delivery systems.The research thesis is about the synthesis and characterization of the light-sensitive biocompatible nanogels with the core-shell structure with the intention of Doxorubicin anti-cancer drug delivery. These smart nanogels possess a hydrophobic core coated with hydrophilic starch polymeric chain modified with beta-cyclodextrin. The formation of the core-shell structure... 

    Synthesis of Magnetic Nanocomposite Scaffolds by Electrospinning Method and Study of Drug Release Behavior

    , Ph.D. Dissertation Sharif University of Technology Khodaei, Azin (Author) ; Bagheri, Reza (Supervisor) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Controlled release is a crucial factor in tissue engineering and cancer-therapy applications. The main purpose of current research is to synthesis smart magnetic nanocarriers for hydrophobic drug and embedding them in a fibrous platform for anti-cancer/ tissue engineering applications. In this regard, three different drug delivery systems of magnetic nanocolloid, magnetic fibers and hydrogels were studied. In the first phase, superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized and then were modified using oleic acid and thermo-sensitive polymer of pluronic F127/F68. After characterization of this composite, Response Surface Methodology (RSM) was applied to model the lower... 

    Controlled Release Delivery System for Antibiotic in Bone Cement

    , M.Sc. Thesis Sharif University of Technology Beyki Sarve ol’ya, Mohammad Saeed (Author) ; Abd Khodaei, Mohammad Jafar (Supervisor)
    Abstract
    The incidence of skeletal diseases such as osteoarthritis and its progression and the need to use knee replacement implants have significant effects on the quality of life. With the improvement of living conditions and the prolongation of the average life expectancy of the society and the aging of a large part of the society, the concern about the increase in the incidence of skeletal diseases and the need to use alternative implants increases. On the other hand, many conditions such as osteoporosis and accidents lead to fractures and cavities in the bones. Bone cements are one of the most widely used materials in orthopedic and spinal surgeries.The aim of this study was to construct a... 

    Improving the Biomedical Performance of Metal–Organic Frameworks in Drug Delivery Systems: in Vitro Studies

    , M.Sc. Thesis Sharif University of Technology Bahmanpour, Maryam (Author) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    In this study, water-stable metal-organic frameworks, UiO-66-(CO2H)2, MIL-53-NH2 (Al), ZIF-8 and MIP-202 (Zr), were selected to study the influence of using plant extracts in drug loading process and also its targeted release from these compounds. For this purpose, at first the solution of different plant extracts was used separately as a synthetic solvent in the preparation of the desired MOFs to be present in the structure of these compounds and increase the interaction of the drug with the nanocarrier. Then, a coating of plant extract was applied on the nanocarrier containing the drug after loading the drug to prevent the rapid penetration of the drug from the cavities of MOFs (drug... 

    Green Synthesis, Characterization and Application of the Nanomaterials Based on Aluminum Fumarate Metal-Organic Frameworks for Targeted and Smart Delivery and Release of Doxorubicin

    , M.Sc. Thesis Sharif University of Technology Abbariki, Nikzad (Author) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    In this research, an attempt was made to increase the efficiency and effectiveness of the targeted and controlled release systems of the anticancer drug (doxorubicin) by using inorganic and organic compounds as well as inorganic-organic hybrids. For this purpose, a whole class of aluminum fumarate metal-organic frameworks-based and reduced-graphene oxide nanocarriers were synthesized and using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), scanning electron microscope (FESEM) and atomic force microscope (AFM) analysis were characterized, and their nano-composites based on organotin-complexes with the approach of achieving a stable drug delivery system,... 

    Synthesis and Evaluation of Molybdenum Disulfide for Combined Photothermal-chemo Therapy

    , Ph.D. Dissertation Sharif University of Technology Salimi, Marzieh (Author) ; Vosoughi, Manouchehr (Supervisor) ; Shokrgozar, Mohammad Ali (Supervisor) ; Delavari, Hamid (Co-Supervisor)
    Abstract
    New methods of cancer treatment are always the attention of researchers all over the world, among which the photothermal treatment method is of particular importance. In addition to being easy, this treatment method has the least invasiveness. Studies have shown that combining this method with other methods such as chemotherapy not only can be very effective in destroying tumor tissue, but can significantly reduce the side effects of chemotherapy drugs.In order to apply the photothermal treatment method, an effective photothermal agent is needed. Molybdenum disulfide nanosheets have performed successfully in this field, which have been of great interest, due to their high efficiency in... 

    Super-hydrophilic characteristic of thermochemically prepared CdS nanocrystals

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Vol. 58 , April , 2014 , pp. 146-152 ; ISSN: 13869477 Marandi, M ; Taghavinia, N ; Babaei, A ; Sharif University of Technology
    Abstract
    CdS nanocrystals were thermochemically (thermally activated) synthesized thorough the reaction between CdSO4 and Na2S 2O3 in an aqueous solution. Thioglycolic Acid (TGA) was used as the capping agent and catalyst of the reaction. The method was based on heat activated dissociation of Na2S2O3 and controllable release of S and free electrons in the solution. CdS NCs were formed by heating the sample solution at 96 C for 1 h. The results of optical spectroscopy and transmission electron microscopy demonstrated round shape NCs with sizes about 3.0 nm. The nanocrystals were also luminescent and represented a broad emission with a peak located at 515 nm and FWHM of 160 nm. Several samples were... 

    Dendritic magnetite decorated by pH-responsive PEGylated starch: A smart multifunctional nanocarrier for the triggered release of anti-cancer drugs

    , Article RSC Advances ; Volume 5, Issue 60 , Jun , 2015 , Pages 48586-48595 ; 20462069 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Hosseini, S. H ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    In the present study, we designed a pH-responsive drug nanocarrier based on polyamidoamine-modified Fe3O4 nanoparticles coated by PEGylated starch-co-poly(acrylic acid). This carrier was used for the controlled release of doxorubicin as an anticancer drug model. The purpose of using the polyethylene glycol moiety is to generate a biostable nanocarrier in blood stream as it has been reported widely in the pharmaceutical literature. The use of a poly(acrylic acid) segment also provided pH-sensitivity to the polymer. Besides, the magnetic nanoparticles facilitate the cancer cell targeting with an external magnetic field located near the tumor site. This carrier was... 

    Folate-receptor-targeted delivery of doxorubicin using polyethylene glycol-functionalized gold nanoparticles

    , Article Industrial and Engineering Chemistry Research ; Volume 49, Issue 4 , 2010 , Pages 1958-1963 ; 08885885 (ISSN) Asadishad, B ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Abstract
    Doxorubicin-loaded nanocarriers were produced employing folate-modified polyethylene glycol (PEG)-functionalized gold nanoparticles for targeted delivery to positive folate-receptor cancer cells. Doxorubicin and folate were, respectively, conjugated to activated-folate and activated-PEG. The conjugates formed doxorubicin nanocarrier with an average size of 12 nm in diameter. The drug release response of functionalized gold nanoparticles was characterized by an initial rapid drug release followed by a controlled release. The doxorubicin nanocarriers showed higher cytotoxic effect on folate-receptor-positive cells (KB cells) than folatereceptor-negative cells (A549 cells). Cell viability in... 

    Smart pectin-based superabsorbent hydrogel as a matrix for ibuprofen as an oral non-steroidal antiinflammatory drug delivery

    , Article Starch/Staerke ; Volume 61, Issue 3-4 , 2009 , Pages 173-187 ; 00389056 (ISSN) Pourjavadi, A ; Barzegar, S ; Sharif University of Technology
    2009
    Abstract
    The purpose of this study was to produce an intelligent superabsorbent polymer (SAP) to be used as a pH sensitive matrix for the controlled delivery of drugs. Novel types of highly swelling SAPs were prepared by grafting crosslinked acrylic acid-co-acrylamide (AA-co-AAm) chains onto pectin by free-radical polymerization. The superabsorbent formation was confirmed by Fourier transform infrared spectroscopic (FT-IR) and scanning electron microscopy (SEM). The controlled release behavior of ibuprofen (IBU) from the superabsorbent polymer was investigated. SAP structural-property relationships that affect its controlled release behavior were determined. Analysis of the results indicated that it... 

    Synthesis and investigation of swelling behavior of new agar based superabsorbent hydrogel as a candidate for agrochemical delivery

    , Article Journal of Polymer Research ; Volume 16, Issue 6 , 2009 , Pages 655-665 ; 10229760 (ISSN) Pourjavadi, A ; Farhadpour, B ; Seidi, F ; Sharif University of Technology
    2009
    Abstract
    In this investigation a new type of superabsorbent hydrogel based on agar was prepared, and the effect of the feed ratio of some components (acrylic acid, MBA, APS and agar) on the swelling capacity of the hydrogel was systematically studied. Maximum water absorbency of the optimized final product was found to be 1,100∈g/g in distilled water. The structure of the hydrogel was characterized by FT-IR method and morphology of the samples was examined by scanning electron microscopy (SEM). Swelling properties of optimized hydrogel sample in different swelling mediums were investigated. The optimum hydrogel were also loaded with potassium nitrate and its potential for controlled release of... 

    The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold

    , Article Iranian Journal of Pharmaceutical Research ; Volume 18, Issue 1 , 2019 , Pages 111-124 ; 17350328 (ISSN) Boroojeni, F. R ; Mashayekhan, S ; Abbaszadeh, H. A ; Sharif University of Technology
    Iranian Journal of Pharmaceutical Research  2019
    Abstract
    In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astrocyte proliferation and microglial activation. Bovine serum albumin (BSA) was used to improve the encapsulation efficiency of DEXP within chitosan nanoparticles and to overcome its initial burst release. BSA incorporation within the chitosan nanoparticles increased the encapsulation efficiency of DEXP... 

    Theoretical study of diffusional release of a dispersed solute from cylindrical polymeric matrix: A novel configuration for providing zero-order release profile

    , Article Applied Mathematical Modelling ; Volume 73 , 2019 , Pages 136-145 ; 0307904X (ISSN) Khorrami Jahromi, A ; Shieh, H ; Saadatmand, M ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    In the context of controlled release drug delivery approaches, the systems providing zero-order release kinetics have special advantages. Through employing these systems, drug concentration could be maintained within the therapeutic window over release time; thus maximum effectiveness alongside minimized side effects of the drug are achieved. However, obtaining zero-order drug release is extremely challenging. One of the main obstacles is the fact that implemented devices should be designed to overcome the decreasing mass transfer driving force, especially, in polymeric systems in which diffusion mechanism is dominant. In this study, we developed a new configuration of a polymeric matrix... 

    Encapsulation of food components and bioactive ingredients and targeted release

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 33, Issue 1 , 2020 , Pages 1-11 Alemzadeh, I ; Hajiabbas, M ; Pakzad, H ; Sajadi Dehkordi, S ; Vossoughi, A ; Sharif University of Technology
    Materials and Energy Research Center  2020
    Abstract
    The potential utilization of encapsulation techniques in food, pharmaceutical and agricultural products preparation, presents a new alternative for complementary technologies such as targeting delivery vehicles and carriers for active food ingredients. Encapsulation could be accomplished by different techniques like: simple or complex coacervation, emulsification technique, phase separation, spray drying, spray chilling or spray cooling, extrusion coating, freeze drying, fluidized-bed coating, liposomal entrapment, centrifugal suspension separation, co-crystallization and molecular inclusion complexation. Encapsulation is a method by which one bioactive material or mixture of materials is... 

    The effect of chitosan and PEG polymers on stabilization of GF-17 structure: A molecular dynamics study

    , Article Carbohydrate Polymers ; Volume 237 , 2020 Asadzadeh, H ; Moosavi, A ; Arghavani Hadi, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    We examine the interactions of chitosan and polyethylene glycol (PEG) with antimicrobial peptide GF-17 to identify a suitable carrier to improve the peptide drug delivery systems. To this end, the molecular dynamics simulations are used to determine the interactions of a typical antimicrobial peptide GF-17 with the chitosan and PEG polymers. The findings indicate the great potential of the peptide to maintain its secondary structure in the adjacent to chitosan polymers. During the interaction with chitosan polymers, the structure of the peptide has smaller fluctuations compared to the PEG polymers. Also, in the presence of both the polymers, the PEG polymers are situated closer to the...