Loading...
Search for: corrosion
0.013 seconds
Total 427 records

    Synthesis and characterization of polyaniline/nanodiamond hybrid nanostructures with various morphologies to enhance the corrosion protection performance of epoxy coating

    , Article Diamond and Related Materials ; Volume 120 , 2021 ; 09259635 (ISSN) Mohammadkhani, R ; Shojaei, A ; Rahmani, P ; Pirhady Tavandashti, N ; Amouzegar, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, nano-sized diamond particles (ND) were functionalized in two consecutive stages. First, dry thermal oxidation was employed to obtain carboxylated ND. In the next step, carboxylated ND was properly surface modified through wet chemistry to acquire aminated-ND (ND-NH2). Then, polyaniline (PANI) was synthesized in the presence of aminated-ND particles at a broad concentration from 1 wt% to 70 wt% to obtain PANI/ND hybrid nanostructures. The chemical structure, morphology, and thermal stability of nanoparticles were comprehensively characterized by different techniques such as FT-IR, UV–visible, TGA, XRD, FESEM, and TEM. It was observed that the morphology of PANI/ND... 

    Synergistic effects of MWCNTs and high-pressure torsion-induced grain refinement on microhardness, tribological properties, and corrosion behavior of Cu and Cu/MWCNT nanocomposites

    , Article Metals and Materials International ; Volume 28, Issue 9 , 2022 , Pages 2197-2215 ; 15989623 (ISSN) Akbarpour, M. R ; Mirabad, H. M ; Golenji, R. B ; Kakaei, K ; Kim, H. S ; Sharif University of Technology
    Korean Institute of Metals and Materials  2022
    Abstract
    In this study, ultra-fine grained Cu and Cu + carbon nanotube (CNT) nanocomposites were prepared through a processes combining flake powder metallurgy, hot pressing, and high-pressure torsion (HPT). The effects of grain refinement and CNT reinforcement on the microstructure, hardness, wear resistance, and corrosion behavior of the newly developed nanocomposites were investigated. The results indicated that the HPT process decreased the grain size of Cu and Cu + CNT by 67.7% and 68.1%, respectively, and increased their microhardness by 151% and 132%. The addition of CNTs substantially improved the tribological behavior of Cu by generating a mechanically mixed carbon- and oxide-rich layer.... 

    Influence of annealing on the electrochemical behavior of finemet amorphous and nanocrystalline alloy

    , Article Journal of Materials Science ; Volume 45, Issue 2 , 2010 , Pages 546-551 ; 00222461 (ISSN) Asghari Shivaee, H ; Nozad Golikand, A ; Madaah Hosseini, H. R ; Asgari, M ; Sharif University of Technology
    Abstract
    The electrochemical corrosion behavior of finemet alloy at various heat treatment temperatures was investigated. Thermal behavior and structural changes were studied using differential scanning calorimetry and X-ray diffractometry, respectively. The electrochemical corrosion of amorphous and annealed samples was investigated in 0.10 M NaOH solution using electrochemical impedance spectroscopy and linear sweep voltammetery. Changes in morphology of the samples before and after corrosion were characterized using optical microscope. The results showed that structural relaxation and nanocrystallization during the heat treatment improved corrosion behavior of the alloy. The heat-treated alloy at... 

    Mild steel carbon dioxide corrosion modelling in aqueous solutions

    , Article Corrosion Engineering Science and Technology ; Volume 43, Issue 4 , 2008 , Pages 290-296 ; 1478422X (ISSN) Shayegani, M ; Afshar, A ; Ghorbani, M ; Rahmaniyan, M ; Sharif University of Technology
    2008
    Abstract
    A model for prediction of corrosion of mild steel in aqueous solutions containing carbon dioxide is proposed. In this model, formation of protective corrosion product is not yet considered, species concentration at the surface was calculated by using molecular diffusion phenomena and the diffusion equations were solved using the finite difference method. Calculated electrochemical currents at the steel surface may be used to determine the corrosion rate. The model was verified experimentally under atmospheric pressure and the effect of parameters, such as liquid velocity and pH, was investigated. The model can predict the electrochemical reaction rates when they were controlled by diffusion... 

    Synthesis of methyltriethoxysilane-modified calcium zinc phosphate nanopigments toward epoxy nanocomposite coatings: Exploring rheological, mechanical, and anti-corrosion properties

    , Article Progress in Organic Coatings ; Volume 171 , 2022 ; 03009440 (ISSN) Haddadi, S. A ; Alibakhshi, E ; Labani Motlagh, A ; Ramazani S. A., A ; Ghaderi, M ; Ramezanzadeh, B ; Mahdavian, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, the effects of unmodified calcium zinc phosphate (UCZP) and modified calcium zinc phosphate (MCZP) nanopigments (NPs) on the rheological, mechanical, and corrosion protection performance (CPP) of the epoxy (EP) coatings were investigated. Transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used to study morphology and overall chemical structure of synthesized calcium zinc phosphate (CZP) NPs, respectively. The grafting of methyltriethoxysilane (MTES) molecules on the surface of CZP was assessed using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and... 

    Detection and analysis of corrosion and contact resistance faults of tin and crn coatings on 410 stainless steel as bipolar plates in PEM fuel cells

    , Article Sensors ; Volume 22, Issue 3 , 2022 ; 14248220 (ISSN) Forouzanmehr, M ; Kashyzadeh, K. R ; Borjali, A ; Ivanov, A ; Jafarnode, M ; Gan, T. H ; Wang, B ; Chizari, M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Bipolar Plates (BPPs) are the most crucial component of the Polymer Electrolyte Membrane (PEM) fuel cell system. To improve fuel cell stack performance and lifetime, corrosion resistance and Interfacial Contact Resistance (ICR) enhancement are two essential factors for metallic BPPs. One of the most effective methods to achieve this purpose is adding a thin solid film of conductive coating on the surfaces of these plates. In the present study, 410 Stainless Steel (SS) was selected as a metallic bipolar plate. The coating process was performed using titanium nitride and chromium nitride by the Cathodic Arc Evaporation (CAE) method. The main focus of this study was to select the best coating... 

    Corrosion detection in pipes by piezoelectric sensors using Artificial Neural Network

    , Article Advanced Materials Research, 4 November 2011 through 6 November 2011 ; Volume 403-408 , November , 2012 , Pages 748-752 ; 10226680 (ISSN) ; 9783037853122 (ISBN) Rafezi, H ; Rahmani, B ; Sharif University of Technology
    2012
    Abstract
    Defect detection in pipes is an essential task specially for sensitive applications such as oil and gas industry where special cares are required. Corrosion is a common defect in pipes which has attracted attention of researchers. In present work a non-destructive methodology for pipe corrosion monitoring is introduced. Polymer of Vinylidene Fluoride (PVDF) Piezoelectric is used as the sensor to measure strain variations affected by internal corrosion. High sensitivity and low cost of piezoelectric materials made them a good candidate for precise industrial applications. Different corrosion conditions (i.e. corrosion location along pipe and corrosion depth) are modeled and sensors voltages... 

    Effects of alumina nanoparticles concentration on microstructure and corrosion behavior of coatings formed on titanium substrate via PEO process

    , Article Ceramics International ; Volume 42, Issue 7 , May , 2016 , Pages 8789–8797 ; 02728842 (ISSN) Sarbishei, S ; Faghihi Sani, M. A ; Mohammadi, M. R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Plasma electrolytic oxidation (PEO) process was employed to create ceramic coatings on titanium substrate by using silicate-based electrolytes containing different concentrations of alumina nanoparticles (0, 3, 6, and 10. g/lit). The effect of alumina nanoparticles concentration on the morphology, chemical and phase composition of the PEO coatings was investigated by scanning electron microscope, energy dispersive spectrometer, and X-ray diffractometer, respectively.The corrosion behavior of samples was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. SEM, EDS, and XRD analyses illustrated that alumina nanoparticles incorporated into the... 

    Effects of zirconia content on characteristics and corrosion behavior of hydroxyapatite/ZrO2 biocomposite coatings codeposited by electrodeposition

    , Article Surface and Coatings Technology ; Volume 262 , January , 2015 , Pages 166-172 ; 02578972 (ISSN) Shojaee, P ; Afshar, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    HAp and HAp/ZrO2 composite coatings were successfully electrodepesited on 316L stainless steel substrates in the solutions containing ZrO2 particles at different concentrations. The effects of ZrO2 content on characteristics of the coatings were investigated using X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM) and bonding strength test. Polarization and electrochemical impedance spectroscopy measurements were carried out in order to evaluate corrosion behavior of the coatings. In-vitro test in SBF and further SEM observations were performed to examine bioactivity of the coatings. HAp/ZrO2 composite coatings showed better... 

    Effect of pulse current parameters on the mechanical and corrosion properties of anodized nanoporous aluminum coatings

    , Article Materials Chemistry and Physics ; Volume 183 , 2016 , Pages 490-498 ; 02540584 (ISSN) Mohammadi, I ; Ahmadi, Sh ; Afshar, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this study, the effects of pulse current parameters on corrosion resistance and mechanical properties of anodized coatings were evaluated. Hardness measurements, polarization and electrochemical impedance spectroscopy tests were employed to investigate the mechanical properties and corrosion behavior of these coatings. Also, field emission scanning electron microscopy (FE-SEM) was used to analyze the surface morphology and microstructure of the coatings. It was found that the properties of anodized coatings were dependent on various parameters, among which, time, temperature and pulse current parameters (current density limit, frequency and duty cycle) were optimized. Analysis of Variance... 

    PH responsive Ce(III) loaded polyaniline nanofibers for self-healing corrosion protection of AA2024-T3

    , Article Progress in Organic Coatings ; Volume 99 , 2016 , Pages 197-209 ; 03009440 (ISSN) Pirhady Tavandashti, N ; Ghorbani, M ; Shojaei, A ; Gonzalez Garcia, Y ; Terryn, H ; Mol, J. M. C ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Cerium nitrate loaded polyaniline (PANI) nanofibers were synthesized in this work via a chemical route. PANI nanofibers act as a host structure for the corrosion inhibitor, forming a Ce(III)-PANI complex. This complex is pH sensitive, and a change of pH can cause breaking of the complex and releasing of Ce(III). The Ce(III) loaded PANI nanofibers were embedded into epoxy ester coating and the self-healing corrosion protection ability was investigated by Scanning Vibrating Electrode Technique (SVET) and Electrochemical Impedance Spectroscopy (EIS). The results showed that by embedding of Ce(III) loaded PANI nanofibers into the coatings a superior corrosion protection and self-healing... 

    Deposition of (Ti, Ru)O2 and (Ti, Ru, Ir)O2 oxide coatings prepared by sol–gel method on titanium

    , Article Journal of Sol-Gel Science and Technology ; Volume 79, Issue 1 , 2016 , Pages 44-50 ; 09280707 (ISSN) Goudarzi, M ; Ghorbani, M ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    Titanium anodes activated by noble metal oxides possess a wide range of advantages and applications. Actually, coating of titanium anodes by highly conductive oxides of noble metals (Ru, Ir) dramatically increases the lifetime of these anodes. In this study, the binary coating consisting of Ti and Ru and the ternary coating consisting of Ti, Ru and Ir were prepared through sol–gel method. After coating of the titanium substrate, the corrosion behavior of coatings was studied by anodic polarization and cyclic voltammetry tests. The lifetime of anodes was determined using accelerated corrosion test. The morphology of coatings was examined by field emission scanning electron microscopy and... 

    Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective

    , Article Journal of Alloys and Compounds ; Volume 781 , 2019 , Pages 945-983 ; 09258388 (ISSN) Azarniya, A ; Taheri, A. K ; Taheri, K. K ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Al-Zn-Mg-Cu alloys (7xxx series Al alloys) are extensively used for their superior mechanical and corrosion performance. These properties are microstructure-sensitive and highly dependent on the formation, growth and coarsening of precipitates. To date, a wide variety of ageing procedures have been developed to tailor the evolved microstructures so as to yield a good combination of mechanical capacity and corrosion resistance of 7xxx series Al alloys. Among these methods, isothermal ageing, multi-stage ageing, non-isothermal ageing, retrogression and re-ageing (RRA), and stress ageing (i.e. creep ageing) are the most significant. In the present review, all of these approaches are... 

    In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO 2 nanotube arrays

    , Article Journal of the Australian Ceramic Society ; Volume 55, Issue 1 , 2019 , Pages 187-200 ; 25101560 (ISSN) Sarraf, M ; Sukiman, N. L ; Bushroa, A. R ; Nasiri Tabrizi, B ; Dabbagh, A ; Abu Kasim, N. H ; Basirun, W. J ; Sharif University of Technology
    Springer International Publishing  2019
    Abstract
    In the present study, the structural features, corrosion behavior, and in vitro bioactivity of TiO 2 nanotubular arrays coated on Ti–6Al–4V (Ti64) alloy were investigated. For this reason, Ti64 plates were anodized in an ammonium fluoride electrolyte dissolved in a 90:10 ethylene glycol and water solvent mixture at room temperature under a constant potential of 60 V for 1 h. Subsequently, the anodized specimens were annealed in an argon gas furnace at 500 and 700 °C for 1.5 h with a heating and cooling rate of 5 °C min −1 . From XRD analysis and Raman spectroscopy, a highly crystalline anatase phase with tetragonal symmetry was formed from the thermally induced crystallization at 500 °C.... 

    Corrosion-wear behavior of AA1050/mischmetal oxides surface nanocomposite fabricated by friction stir processing

    , Article Journal of Alloys and Compounds ; Volume 832 , 2020 Alishavandi, M ; Razmjoo Khollari, M. A ; Ebadi, M ; Alishavandi, S ; Kokabi, A. H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, the wear and corrosion characteristics of six-pass friction stir processed (FSPed) AA1050/mischmetal oxide nanocomposite (6PPA) was compared to six-pass FSPed sample without powder (6 PA) and annealed base metal (BM). Different wear characteristics, such as weight loss, wear rate and coefficient of friction (COF) were studied. In order to evaluate the corrosion resistance of samples, immersion and cyclic polarization tests were performed. In addition, worn and corroded surfaces were investigated by field emission scanning electron microscopy (FESEM). The result of pin on disk dry sliding wear test revealed that wear resistance improved by employing FSP through finer grain... 

    Application of sustainable saffron purple petals as an eco-friendly green additive for drilling fluids: A rheological, filtration, morphological, and corrosion inhibition study

    , Article Journal of Molecular Liquids ; Volume 315 , 2020 Ghaderi, S ; Haddadi, S. A ; Davoodi, S ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, effects of dried saffron purple petals (SPP) powder were examined on the rheological, fluid loss, and corrosion inhibition properties of bentonite-based drilling fluids. Drilling fluids containing different amounts of the SPP powder were prepared and their rheological behavior was investigated via the rotary viscometry and rheometric mechanical spectroscopy (RMS). Rotary viscometer results were fitted with Power-law, Bingham plastic, and Herschel-Bulkley models and the obtained data were compared with that of the base mud. All models fitted the rotary viscometer data with the determination coefficients higher than 0.93. The presence of 3 wt% of the SSP in the fluid... 

    Mild steel corrosion modelling in presence of hydrogen sulphide in aqueous solutions

    , Article Corrosion Engineering Science and Technology ; Volume 43, Issue 4 , 2008 , Pages 324-327 ; 1478422X (ISSN) Shayegani, M ; Afshar, A ; Ghorbani, M ; Rahmaniyan, M ; Sharif University of Technology
    2008
    Abstract
    Corrosion of mild steel in aqueous solutions containing hydrogen sulphide was modelled under the condition that an iron sulphide film was formed on the steel surface. In the present model, the iron sulphide forms on the steel surface as a result of a solid state reaction between iron and hydrogen sulphide which has several steps. First a very thin film of iron sulphide nucleates on the steel surface. Then, due to further growth of the initial thin layer, a more porous layer of iron sulphide forms on the initial film. In the present model, it is assumed that mass transfer through the thin iron sulphide layer (i.e. adjacent to the steel substrate) controls the corrosion rate of steel in H 2S... 

    Optimization of nano HA-SiC coating on AISI 316L medical grade stainless steel via electrophoretic deposition

    , Article Materials Letters ; Volume 285 , 2021 ; 0167577X (ISSN) Hosseini, M. R ; Ahangari, M ; Johar, M. H ; Allahkaram, S. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Biocompatible nanostructured coating plays an important role in enhancement of osseointegration ability of metallic implants. This study sets out to obtain optimized SiC concentration in Hydroxyapatite (HA) coating on AISI 316L stainless steel alloy through electrophoretic deposition method. Effect of SiC concentrations (1, 2, and 3%.wt) on the morphology, corrosion behaviour, and mechanical properties of the HA coating is investigated. Results show that SiC could obstruct the formation and growth of micro cracks in the HA coating where HA-3%SiC is considered as a crack free coating. Electrochemical tests reveal that SiC has improved the corrosion resistance of HA coating, and HA-3%SiC... 

    Development of an active/barrier bi-functional anti-corrosion system based on the epoxy nanocomposite loaded with highly-coordinated functionalized zirconium-based nanoporous metal-organic framework (Zr-MOF)

    , Article Chemical Engineering Journal ; Volume 408 , 2021 ; 13858947 (ISSN) Ramezanzadeh, M ; Ramezanzadeh, B ; Bahlakeh, G ; Tati, A ; Mahdavian, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    For the first time, the UIO-66, NH2-UIO, and NH2-UIO particles covalently functionalized by Glycidyl Methacrylate (GMA@NH2-UIO), were utilized as the novel functional anti-corrosive fillers. The functionality, high surface area, phase composition, excellent thermal properties as well as chemical stability of the Zr-MOFs were proved by FT-IR, BET, XRD, TGA, and water stability tests, respectively. The smart pH-sensitive controlled-release activity of the corrosion inhibitors (i.e., Zr ions and organic compounds) from the prepared Zr-MOFs was proved by the water stability test of the Zr-MOFs particles in the acidic (pH = 2), neutral (pH = 7.5), and alkaline (pH = 12) solutions containing 3.5... 

    Synergistic effects of MWCNT and high-pressure torsion-induced grain refinement on microhardness, tribological properties, and corrosion behavior of Cu and Cu/MWCNT nanocomposites

    , Article Metals and Materials International ; 2021 ; 15989623 (ISSN) Akbarpour, M. R ; Mirabad, H. M ; Golenji, R. B ; Kakaei, K ; Kim, H. S ; Sharif University of Technology
    Korean Institute of Metals and Materials  2021
    Abstract
    In this study, ultra-fine grained Cu and Cu + carbon nanotube (CNT) nanocomposites were prepared through a processes combining flake powder metallurgy, hot pressing, and high-pressure torsion (HPT). The effects of grain refinement and CNT reinforcement on the microstructure, hardness, wear resistance, and corrosion behavior of the newly developed nanocomposites were investigated. The results indicated that the HPT process decreased the grain size of Cu and Cu + CNT by 67.7% and 68.1%, respectively, and increased their microhardness by 151% and 132%. The addition of CNTs substantially improved the tribological behavior of Cu by generating a mechanically mixed carbon- and oxide-rich layer....