Loading...
Search for: cross-flow
0.008 seconds
Total 56 records

    Permeability reduction of membranes during particulate suspension flow; analytical micro model of size exclusion mechanism

    , Article Journal of Membrane Science ; Vol. 435, issue , May , 2013 , p. 155-164 ; ISSN: 3767388 Bashtani, F ; Ayatollahi, S ; Habibi, A ; Masihi, M ; Sharif University of Technology
    Abstract
    Particle capture at porous media in cross-flow microfiltration is studied to investigate permeability reduction as a function of membrane pore size and particle size distribution. A new model in pore scale and its pertinent mathematical expressions, which consider pore and particle size distribution, are provided. Permeability reduction of the membrane because of size exclusion during particulate suspension flow was predicted using the developed model. It is assumed that the size exclusion is the dominant mechanism of particle retention causes pore blocking and permeability reduction in the porous media.The exact analytical solution of the stochastic model for size exclusion is used to... 

    Experimental investigation of leading-edge roughness effects on stationary crossflow instability of a swept wing

    , Article Scientia Iranica ; Volume 20, Issue 3 , 2013 , Pages 524-534 ; 10263098 (ISSN) Soltani, M. R ; Masdari, M ; Damghani, H ; Sharif University of Technology
    2013
    Abstract
    Wind tunnel experiments were conducted to evaluate surface pressure distribution over a semi span swept wing with a sweep angle of 33°. The wing section has a laminar flow airfoil similar to that of the NACA 6-series. The tests were conducted at speeds ranging from 50 to 70 m/s with and without surface roughness. Surface static pressure was measured on the wing upper surface at three different chordwise rows located at the inboard, middle, and outboard stations. The differences between pressure distributions on the three sections of the wing were studied and the experimental results showed that roughness elements do not influence the pressure distribution significantly, except at the inboard... 

    A coupled wellbore-reservoir flowmodel for numerical pressure transient analysis in vertically heterogeneous reservoirs

    , Article Journal of Porous Media ; Volume 16, Issue 5 , 2013 , Pages 395-400 ; 1091028X (ISSN) Khadivi, K ; Soltanieh, M ; Farhadpour, F. A ; Sharif University of Technology
    2013
    Abstract
    Pressure transient analysis in vertically heterogeneous reservoirs is examined. The inclusion of a separate model for the free fluid flow in the wellbore is essential to allow for hydraulic communication and mixing of the fluid issuing from different reservoir layers. A two-dimensional model coupling Darcy flow in the reservoir with Navier-Stokes flow in the wellbore is developed and solved by the finite element technique. The coupled wellbore-reservoir flow model is used to analyze a layered reservoir with an abrupt change in permeability and a thick formation showing a gradual change in permeability with depth. Contrary to conventional reservoir models, this new model is able to capture... 

    Permeability reduction of membranes during particulate suspension flow; analytical micro model of size exclusion mechanism

    , Article Journal of Membrane Science ; Volume 435 , 2013 , Pages 155-164 ; 03767388 (ISSN) Bashtani, F ; Ayatollahi, S ; Habibi, A ; Masihi, M ; Sharif University of Technology
    2013
    Abstract
    Particle capture at porous media in cross-flow microfiltration is studied to investigate permeability reduction as a function of membrane pore size and particle size distribution. A new model in pore scale and its pertinent mathematical expressions, which consider pore and particle size distribution, are provided. Permeability reduction of the membrane because of size exclusion during particulate suspension flow was predicted using the developed model. It is assumed that the size exclusion is the dominant mechanism of particle retention causes pore blocking and permeability reduction in the porous media.The exact analytical solution of the stochastic model for size exclusion is used to... 

    Modeling of transient permeate flux decline during crossflow microfiltration of non-alcoholic beer with consideration of particle size distribution

    , Article Journal of Membrane Science ; Volume 411-412 , September , 2012 , Pages 13-21 ; 03767388 (ISSN) Kazemi, M. A ; Soltanieh, M ; Yazdanshenas, M ; Sharif University of Technology
    2012
    Abstract
    Crossflow microfiltration of non-alcoholic beer is investigated numerically and it has been verified by experimental data. Due to the presence of particles with different sizes in feed suspension, a modified combination of three mechanisms of particle back-diffusion is developed to predict particle deposition and cake layer buildup during the process. The simulation results show that smaller particles (about 1μm) are the main contributor to the cake layer due to a minimum in back transport and are the main reason of the flux decline. On the other hand, larger particles (a p>20μm) are swept away along the membrane during the filtration process and move toward the membrane exit due to the... 

    New visions in experimental investigations of a supersonic under-expanded jet into a high subsonic crossflow

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 224, Issue 10 , 2010 , Pages 1069-1080 ; 09544100 (ISSN) Hojaji, M ; Soltani, M. R ; Taeibi Rahni, M ; Sharif University of Technology
    2010
    Abstract
    A series of experiments was performed to investigate the interaction of an under-expanded axisymmetric supersonic jet exhausted from a flat plate with a high subsonic crossflow. The goal was to study the effect of boundary layer thickness (δ) and jet to freestream dynamic pressure ratio (J) on flow field pressure distributions. The resulting measurements upstream of the jet showed that with increasing boundary layer thickness, the magnitude of the pressure coefficient decreases, whereas downstream of the jet, the recovery of the back-pressure moved closer to the nozzle exit. Flow field measurements indicated that with increasing boundary layer thickness, the jet plume dissipation rate... 

    A quasi-three-dimensional thermal model for multi-stream plate fin heat exchangers

    , Article Applied Thermal Engineering ; Volume 157 , 2019 ; 13594311 (ISSN) Niroomand, R ; Saidi, M. H ; Hannani, S. K ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, a novel pseudo-three-dimensional model is developed to find out both fluid and solid temperature distributions in multi-stream plate fin heat exchangers. In this simulation algorithm, heat exchangers can be in either parallel flow or cross flow configuration. The model considerations include: heat leakage of cap plates and side plates, conduction throughout the solid matrix of the heat exchanger, variable physical properties, and inlet mass flow rate maldistribution. Using the computational code, the effects of different factors such as: the number of layers, mass flow variation, inlet mass flow rate maldistribution, and stacking pattern on the thermal performance of the heat... 

    Effects of Mach numbers on Magnus induced surface pressure

    , Article Chinese Journal of Aeronautics ; 2020 ASKARY, F ; SOLTANI, M. R ; Sharif University of Technology
    Chinese Journal of Aeronautics  2020
    Abstract
    Experimental and numerical methods were used to investigate the Magnus phenomena over a spinning projectile. The pressure force acting on the surface of a spinning projectile was measured for various cases by employing a relatively novel experimental technique. A set of miniature pressure sensors along with a data acquisition board, battery and storage memory were placed inside a spinning model and the surface pressure were obtained through a remotely controlled system. Circumferential pressures of the model for both rotational and static conditions were obtained at two different free stream Mach numbers of 0.4 and 0.8 and at different angles of attack. The results showed the ability of this... 

    A general multi-scale modeling framework for two-phase simulation of multi-stream plate-fin heat exchangers

    , Article International Journal of Heat and Mass Transfer ; Volume 156 , 2020 Niroomand, R ; Saidi, M. H ; Hannani, S. K ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Compact heat exchangers are among the vital components used in various industries. In this study, a general framework has been developed with a multi-scale point of view for three-dimensional simulation of multi-stream plate-fin heat exchangers. The most important features in the MSPFHEs simulation, such as phase change phenomena, multi-component mixtures, multiple streams, transversal, lateral and longitudinal conduction, non-uniformity of inlet flow, variable fluid properties, and heat leakage are simultaneously considered in this model. The modular form of the model structure has facilitated layer-by-layer simulation of cross flow heat exchangers as well as parallel flow ones. Our model... 

    Evaluation of rans approach in predicting the physics of incompressible turbulent jets-into-crossflow

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 8 PART A , 2008 , Pages 683-698 ; 0791843025 (ISBN); 9780791843024 (ISBN) Javadi, K ; Taeibi Rahni, M ; Darbandi, M ; Sharif University of Technology
    2008
    Abstract
    This work is conducted with evaluation of different turbulence models capabilities in predicting three dimensional jet-into-crossflow (JICF) interactions. For this purpose, first of all, comprehensive discussions on the near wall flow complexities due to discharge of a jet into a crossflow are presented. In this regards, large scale coherent structures such as: counter rotating vortex pairs (CRVP's), near wall secondary motions, horseshoe vortices, and wall jets like are discussed. Secondly, the abilities of different turbulence models in predicting such flows (JICF) are evaluated. Our evaluation is based on three points of view including: 1) JICF characteristics, 2) computed location, and... 

    A novel design and performance optimization methodology for hydraulic Cross-Flow turbines using successive numerical simulations

    , Article Renewable Energy ; Volume 169 , 2021 , Pages 1402-1421 ; 09601481 (ISSN) Mehr, G ; Durali, M ; Khakrand, M. H ; Hoghooghi, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This paper introduces a new methodology for designing and optimizing the performance of hydraulic Cross-Flow turbines for a wide range of operating conditions. The methodology is based on a one-step approach for the system-level design phase and a three-step, successive numerical analysis approach for the detail design phase. Compared to current design methodologies, not only does this approach break down the process into well-defined steps and simplify it, but it also has the advantage that once numerical simulations are conducted for a single turbine, most of the results can be used for an entire class of Cross-Flow turbines. In this paper, after a discussion of the research background, we... 

    Analytical and numerical biaxial bending analysis of deepwater riser due to vortex-induced vibration

    , Article Journal of Marine Science and Technology (Japan) ; Volume 27, Issue 1 , 2022 , Pages 492-507 ; 09484280 (ISSN) Tabeshpour, M. R ; Komachi, Y ; Sharif University of Technology
    Springer Japan  2022
    Abstract
    Previous studies of analysis and prediction of marine risers responses usually focus on vortex-induced vibration (VIV) of cross-flow (CF) direction rather than in-line (IL). Recent studies show that responses of IL direction tend to dominate in some cases. Responses of long riser due to biaxial bending of IL and CF VIV are investigated. Closed-form formulas are derived for estimating maximum normal stress due to the biaxial moment of CF/IL VIV and relations for estimating biaxial stress using CF values are presented. Analytical results are compared with numerical results of the time domain model and a good correlation is observed. It is shown that for tension and bending-controlled modes of... 

    Experimental Study on Primary Breakup Dynamics and Spray Characteristics of Rotary Atomizers

    , Ph.D. Dissertation Sharif University of Technology Rezayat, Sajjad (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    The liquid breakup analysis and spray characteristics measurement of atomizers are very essential for the numerical modeling of the primary atomization in combustion chambers. The rotary atomizers are used in many applications especially in small gas turbine engines as a fuel injection system. An experimental investigation of primary breakup dynamics and spray characteristics of rotary atomizers with high aspect ratio discharge channels are described. Four different rotary atomizers with round radial, round radial-axial, round radial tangential, and square radial discharge channels are studied. The purposes of this study are to identify the effect of channel orientation and its geometry on... 

    Compound triple jets film cooling improvements via velocity and density ratios: Large eddy simulation

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 133, Issue 3 , Mar , 2011 ; 00982202 (ISSN) Farhadi Azar, R ; Ramezanizadeh, M ; Taeibi Rahni, M ; Salimi, M ; Sharif University of Technology
    2011
    Abstract
    The flow hydrodynamic effects and film cooling effectiveness placing two small coolant ports just upstream the main jet (combined triple jets) were numerically investigated. Cross sections of all jets are rectangular and they are inclined normally into the hot cross-flow. The finite volume method and the SIMPLE algorithm on a multiblock nonuniform staggered grid were applied. The large-eddy simulation approach with three different subgrid scale models was used. The obtained results showed that this flow configuration reduces the mixing between the freestream and the coolant jets and hence provides considerable improvements in film cooling effectiveness (both centerline and spanwise averaged... 

    Contribution of fouling and gel polarization during ultrafiltration of raw apple juice at industrial scale

    , Article Desalination ; Volume 258, Issue 1-3 , 2010 , Pages 194-200 ; 00119164 (ISSN) Yazdanshenas, M ; Tabatabaee Nezhad, S. A. R ; Soltanieh, M ; Roostaazad, R ; Khoshfetrat, A. B ; Sharif University of Technology
    2010
    Abstract
    The flux behavior during the industrial cross-flow ultrafiltration of apple juice in a batch process was modeled using a combination of the fouling and concentration polarization models. It was observed that the major flux reduction was at the beginning and at the end of operation due to fouling and increasing solute concentration in the feed tank, respectively. The fouling phenomenon was analyzed by classical and empirical models and it was shown that the empirical one has the best correlation within less than 0.3% error for each experiment. The most significant advantage of this model is its ability to predict a steady flux, while other models predict zero flux at infinite time, which is... 

    Cost and entropy generation minimization of a cross-flow plate fin heat exchanger using multi-objective genetic algorithm

    , Article Journal of Heat Transfer ; Volume 133, Issue 2 , Nov , 2011 ; 00221481 (ISSN) Ahmadi, P ; Hajabdollahi, H ; Dincer, I ; Sharif University of Technology
    2011
    Abstract
    In the present work, a thermal modeling is conducted for optimal design of compact heat exchangers in order to minimize cost and entropy generation. In this regard, an εNTU method is applied for estimation of the heat exchanger pressure drop, as well as effectiveness. Fin pitch, fin height, fin offset length, cold stream flow length, no-flow length, and hot stream flow length are considered as six decision variables. Fast and elitist nondominated sorting genetic algorithm (i.e., nondominated sorting genetic algorithm II) is applied to minimize the entropy generation units and the total annual cost (sum of initial investment and operating and maintenance costs) simultaneously. The results for...