Loading...
Search for: crystallinity
0.008 seconds
Total 278 records

    Synthesis, characterizations and catalytic studies of a new two-dimensional metal-organic framework based on Co-carboxylate secondary building units

    , Article Journal of Solid State Chemistry ; Volume 223 , March , 2015 , Pages 32-37 ; 00224596 (ISSN) Bagherzadeh, M ; Ashouri, F ; Daković, M ; Sharif University of Technology
    Academic Press Inc  2015
    Abstract
    A metal-organic framework [Co3(BDC)3(DMF)2(H2O)2] was synthesized and structurally characterized. X-ray single crystal analysis revealed that the framework contains a 2D polymeric chain through coordination of 1,4-benzenedicarboxylic acid linker ligand to cobalt centers. The polymer crystallize in monoclinic P21/n space group with a=13.989(3) Å, b=9.6728(17) Å, c=16.707(3) Å, and Z=2. The polymer features a framework based on the perfect octahedral Co-O6 secondary building units. The catalytic activities of [Co3(BDC)3(DMF)2(H2O)2]n for olefins oxidation was conducted. The heterogeneous catalyst could be facilely separated from the reaction mixture, and reused three times without significant... 

    A concurrent multi-scale technique in modeling heterogeneous FCC nano-crystalline structures

    , Article Mechanics of Materials ; Volume 83 , April , 2015 , Pages 40-65 ; 01676636 (ISSN) Khoei, A. R ; Jahanbakhshi, F ; Aramoon, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this paper, a multi-scale molecular dynamics-finite element coupling is presented to study the mechanical behavior of heterogeneous nano-crystalline structures. The stiffness and mass matrices of the continuum sub-domain are generated by applying a linear transformation on the matrices obtained via the atomic structure underlying the FE mesh. A Lagrange multiplier method is employed to the transition zone imposing velocity resemblance of the coupling regions. The constraint equations of motion are solved by the multi-time-step decomposition thus giving the opportunity to ascribe different time steps to each individual zone. The molecular dynamics is performed by employing the... 

    Visible light photoinactivation of bacteria by tungsten oxide nanostructures formed on a tungsten foil

    , Article Applied Surface Science ; Volume 338 , May , 2015 , Pages 55-60 ; 01694332 (ISSN) Ghasempour, F ; Azimirad, R ; Amini, A ; Akhavan, O ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Antibacterial activity of tungsten oxide nanorods/microrods were studied against Escherichia coli bacteria under visible light irradiation and in dark. A two-step annealing process at temperatures up to 390 °C and 400-800 °C was applied to synthesize the tungsten oxide nanorods/microrods on tungsten foils using KOH as a catalyst. Annealing the foils at 400 °C in the presence of catalyst resulted in formation of tungsten oxide nanorods (with diameters of 50-90 nm and crystalline phase of WO3) on surface of tungsten foils. By increasing the annealing temperature up to 800 °C, tungsten oxide microrods with K2W6O19 crystalline phase were formed on the foils. The WO3 nanorods showed a strong... 

    Synthesis and analysis of the properties of ferro-fluids

    , Article ICONN 2010 - Proceedings of the 2010 International Conference on Nanoscience and Nanotechnology, 22 February 2010 through 26 February 2010, Sydney, NSW ; 2010 , Pages 91-93 ; 9781424452620 (ISBN) Maleki Jirsaraei, N ; Ghane Motlagh, B ; Ghane Golmohamadi, F ; Ghane Motlagh, R ; Rouhani, S ; Sharif University of Technology
    2010
    Abstract
    We report the rheological properties of ferro-fluid (FF) containing iron oxide nano-particles. At first, a FF was synthesized by using chemical co-precipitaton[1]. The microstructure study using SEM revealed that the FF contained nano-particles with the mean particle size of 35nm. The XRD study revealed that we have well crystallized structures of magnetite; they appeared to be approximately single crystalline structures. The rheological results proved that the FF has non Newtonian behavior, it is a shear thinning fluid in all magnetic fields, Moreover, the magnetic field increases the viscosity in a definite shear rate due to the nano-particles agglomerations and formation of chain-like... 

    Electrical behavior of nano-polycrystalline (La1-yK y)0.7Ba0.3MnO3 manganites

    , Article Journal of Magnetism and Magnetic Materials ; Volume 322, Issue 21 , November , 2010 , Pages 3255-3261 ; 03048853 (ISSN) Mazaheri, M ; Akhavan, M ; Sharif University of Technology
    2010
    Abstract
    We present a study of the structural and electrical behavior of nano-polycrystalline mixed barium and alkali substituted lanthanum-based manganite, (La1-yKy)0.7Ba0.3MnO 3 with y=0.00.3. The samples were synthesized by the polymerization complex solgel method. The powder X-ray diffraction (XRD) data of the samples show a single-phase character with R3c space group. The magnetic and electrical transport properties of the nano-polycrystalline samples have been investigated in the temperature range 50300 K and a magnetic field up to 10 kOe. The metalinsulator transition temperature Tp of all the samples decreased with potassium doping, and also, it increased slightly with the application of... 

    Micro-arc oxidized S-TiO2 nanoporous layers: Cationic or anionic doping?

    , Article Materials Letters ; Volume 64, Issue 20 , 2010 , Pages 2215-2218 ; 0167577X (ISSN) Bayati, M.R ; Moshfegh, A. Z ; Golestani Fard, F ; Sharif University of Technology
    2010
    Abstract
    S-doped TiO2 layers were grown on titanium substrates by MAO process. SEM results revealed a porous morphology with a pore size of 40-100 nm. Our XRD analysis showed that the anatase relative content reached its maximum value at the voltage of 500 V. The existence of sulfur in the states of S 4+ and S6+ which substituted Ti4+ in the titania crystalline lattice was confirmed by XPS results; meanwhile, no S 2- was detected. That is, a cationic doping was observed. EDS results showed that sulfur concentration in the layers increased with the voltage. The band gap energy was also calculated as 2.29 eV employing a UV-Vis spectrophotometer  

    Effect of Fe3 concentration on MWCNTs formation in liquid arcing method

    , Article Physica B: Condensed Matter ; Volume 405, Issue 20 , October , 2010 , Pages 4344-4349 ; 09214526 (ISSN) Shervin, S ; Gheytani, S ; Simchi, A ; Sharif University of Technology
    2010
    Abstract
    The formation of multi-walled carbon nanotubes (MWCNTs) during arc discharge in aqueous solutions of Fe2(SO4)3 and FeCl3 was studied. The concentration of iron ions changed from zero (deionized water) to 0.25 M and the cathodic products were examined by transmission electron microscopy, Raman spectrometry, and thermal gravimetric analysis. The experimental results showed that the crystallinity of MWCNTs is improved by increasing the concentration of iron ions. Nevertheless, the process yield and overall quality of the produced CNTs were significantly affected by iron concentration in the aqueous solution. This observation suggested that there should be an optimum iron concentration at which... 

    Mechanically activated synthesis of single crystalline MgO nanostructures

    , Article Journal of Alloys and Compounds ; Volume 506, Issue 2 , September , 2010 , Pages 715-720 ; 09258388 (ISSN) Nusheh, M ; Yoozbashizadeh, H ; Askari, M ; Kobatake, H ; Fukuyama, H ; Sharif University of Technology
    2010
    Abstract
    One-dimensional (1D) MgO structures were successfully synthesized via carbothermic reduction of mechanically activated mixture of MgO and graphite. Mechanical activation of source materials before carbothermic reduction can substantially enhance the formation of MgO products at a temperature (1000 °C) relatively lower than that required in previous approaches (≥1200 °C). However, the morphology of MgO formed is dependent on the degree of mechanical activation and the condition of the subsequent carbothermic reduction. Two distinctive morphologies were found for MgO products synthesized using our method: single crystalline nanorods with rectangular cross-sections whose diameters range from 50... 

    Mesoporous and nanocrystalline sol-gel derived NiTiO3 at the low temperature: Controlling the structure, size and surface area by Ni:Ti molar ratio

    , Article Solid State Sciences ; Volume 12, Issue 9 , 2010 , Pages 1629-1640 ; 12932558 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Nanocrystalline nickel titanate (NiTiO3) thin films and powders with mesoporous structure were produced at the low temperature of 500 °C by a straightforward particulate sol-gel route. The sols were prepared in various Ni:Ti molar ratios. X-ray diffraction and Fourier transform infrared spectroscopy revealed that the powders contained mixtures of the NiTiO 3 and NiO phases, as well as the anatase-TiO2 and the rutile-TiO2 depending on the annealing temperature and Ni:Ti molar ratio. Moreover, it was found that Ni:Ti molar ratio influences the preferable orientation growth of the nickel titanate, being on (202) planes for the nickel dominant powders (Ni:Ti ≥ 75:25) and on (104) planes for the... 

    Investigation of the gas barrier properties of PP/ciay nanocomposite films with EVA as a compatibiliser prepared by the melt intercalation method

    , Article Polymer - Plastics Technology and Engineering ; Volume 49, Issue 10 , 2010 , Pages 991-995 ; 03602559 (ISSN) Shafiee, M ; Ahmad Ramazani, S. A ; Danaei, M ; Sharif University of Technology
    2010
    Abstract
    In this research, polypropylene (PP) nanocomposite films were prepared by melt intercalation method and their properties have been evaluated. To facilitate the formation of either intercalated or exfoliated nanocomposites, ethylene vinyl acetate copolymer (EVA) was used as a compatibiliser. Morphology of composites was determined by X-ray Diffraction (XRD) and transmission electron microscopy (TEM). XRD and TEM analyses confirmed that increasing of EVA content leads to achievement of intercalated nanocomposites. Furthermore, differential scanning calorimetry (DSC) measurement indicated a decrease in crystallinity, melting point and crystallization temperature. Also, permeability tests showed... 

    The effect of temperature on the TCVD growth of CNTs from LPG over Pd nanoparticles prepared by laser ablation

    , Article Physica B: Condensed Matter ; Volume 405, Issue 16 , 2010 , Pages 3468-3474 ; 09214526 (ISSN) Pasha, M. A ; Poursalehi, R ; Vesaghi, M. A ; Shafiekhani, A ; Sharif University of Technology
    2010
    Abstract
    TCVD growth of multiwalled carbon nanotubes (MWCNTs) was reported by catalytic decomposition of liquefied petroleum gas (LPG) at a temperature range of 580800 °C. Laser ablation was employed as a simple and rapid technique to produce Pd nanoparticles which possess effective catalytic activities for CNT synthesis. UVvisible spectroscopy and TEM images confirmed that the Pd nanoparticles are stable for a long time and have rather spherical shape with average size of 7 nm. SEM and TEM observations and Raman spectroscopy demonstrated that the CNTs have a wavy structure, dense morphology and acceptable crystallinity. Since Pd nanoparticles are inactivated or agglomerated at extremes of the... 

    Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities

    , Article Surface and Coatings Technology ; Volume 204, Issue 21-22 , August , 2010 , Pages 3676-3683 ; 02578972 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    Abstract
    Antibacterial activity of sol-gel synthesized Ag-TiO2 nanocomposite layer (30nm) deposited on rough anatase (a) TiO2 thin film (~200nm in thickness) was investigated against Escherichia coli bacteria, in dark and also in exposure to UV light. The nanocomposite thin films were transparent with a surface plasmon resonance absorption band at a wavelength of 410nm. The metallic silver nanoparticles with an average diameter of 30nm and fcc crystalline structure were self-accumulated on surface of a mesoporous and aqueous TiO2 layer with a capillary pore structure having a pore radius of 3.0nm. By adding the silver nanoparticles in the TiO2 layer, recombination of the photoexcited electron-hole... 

    Synthesis and characterisation of nanostructured neodymium titanium oxides by sol-gel process: Controlling the phase composition, crystal structure and grain size

    , Article Materials Chemistry and Physics ; Volume 122, Issue 2-3 , 2010 , Pages 512-523 ; 02540584 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Nanocrystalline neodymium titanium oxide thin films and powders with different phase compositions with mesoporous structure were produced by a straightforward particulate sol-gel route. The sols were prepared in various Nd:Ti molar ratios and they showed a narrow particle size distribution in the range 20-26 nm. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders contained mixtures of Nd4Ti9O24, Nd2Ti4O11, Nd3Ti4O12 for titanium dominant powders (Nd:Ti ≤ 45:60), mixtures of Nd2TiO5 and Nd2O3 for neodymium dominant powders (Nd:Ti ≥ 75:25) and pure Nd3Ti4O12 phase for equal molar ratio of Nd:Ti, depending on the annealing temperature and Nd:Ti... 

    Effects of nucleation agent particle size on properties, crystallisation and microstructure of glass-ceramics in TiO2-ZrO2-Li 2O-CaO- Al2O3-SiO2 system

    , Article Advances in Applied Ceramics ; Volume 109, Issue 6 , 2010 , Pages 318-323 ; 17436753 (ISSN) Nemati, A ; Goharian, P ; Shabanian, M ; Afshar, A ; Sharif University of Technology
    2010
    Abstract
    The objective of this study was to evaluate the effects of P 2O5 particle size distribution on the crystalline phases and microstructure of lithium disilicate glass-ceramics derived from the TiO2-ZrO2-Li2O-CaO-Al2O 3-SiO2 system for dentistry applications. The samples were made via fusion and casting procedure. Crystallisation as well as the morphology and microstructure of the samples were investigated using X-ray diffraction, differential scanning calorimetric and scanning electron microscopy. The results showed that the crystallisation of the samples occurred in the range of 500-650°C. The main crystalline phase was lithium disilicate (Li2Si2O5) along with Lithium metasilicate (Li2SiO3),... 

    Low temperature nanostructured lithium titanates: Controlling the phase composition, crystal structure and surface area

    , Article Journal of Sol-Gel Science and Technology ; Volume 55, Issue 1 , 2010 , Pages 19-35 ; 09280707 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Low temperature lithium titanate compounds (i.e., Li4Ti 5O12 and Li2TiO3) with nanocrystalline and mesoporous structure were prepared by a straightforward aqueous particulate sol-gel route. The effect of Li:Ti molar ratio was studied on crystallisation behaviour of lithium titanates. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders were crystallised at the low temperature of 500 °C and the short annealing time of 1 h. Moreover, it was found that Li:Ti molar ratio and annealing temperature influence the preferable orientation growth of the lithium titanate compounds. Transmission electron microscope (TEM) images showed that the average... 

    Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation

    , Article Ultrasonics Sonochemistry ; Volume 17, Issue 5 , Jun , 2010 , Pages 853-856 ; 13504177 (ISSN) Rouhani, P ; Taghavinia, N ; Rouhani, S ; Sharif University of Technology
    2010
    Abstract
    A rapid, environmental friendly and low-cost method to prepare hydroxyapatite nanoparticles is proposed. In this method, hydroxyapatite is produced in a sonicated pseudo-body solution. The sonication time was found effective in the formation of the crystalline phase of nanoparticles. In our experimental condition, 15 min sonication resulted in the most pure hydroxyapatite phase. Also it was shown that growth temperature is a crucial factor and hydroxyapatite crystallizes only at 37 °C. The particles formed by sonication were generally smaller and more spherical than those obtained without sonication. Sonication increased the hydroxyapatite crystal growth rate up to 5.5 times compared to... 

    Modeling of induced empirical constitutive relations on materials with FCC, BCC, and HCP crystalline structures: Severe plastic deformation

    , Article International Journal of Advanced Manufacturing Technology ; Volume 47, Issue 9-12 , April , 2010 , Pages 1033-1039 ; 02683768 (ISSN) Kazeminezhad, M ; Hosseini, E ; Sharif University of Technology
    2010
    Abstract
    In this study, empirical constitutive relations of materials with different crystalline structures through severe plastic deformation are introduced. Here, for each material, an optimized empirical relation is chosen by fitting some empirical relations on the results achieved from a dislocation- based constitutive model. In this work, four modes of empirical relations are fitted on the results of modified Estrin-Toth-Molinari-Brechet constitutive model for four materials with different crystalline structures (Al, Cu, Ta, and Zr). The obtained relations for the materials can be usable in commercial finite element codes  

    Visible photoenhanced current-voltage characteristics of Au : TTT iO2 nanocomposite thin films as photoanodes

    , Article Journal of Physics D: Applied Physics ; Volume 43, Issue 10 , 2010 ; 00223727 (ISSN) Naseri, N ; Amiri, M ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    In this investigation, the effect of annealing temperature and concentration of gold nanoparticles on the photoelectrochemical properties of sol-gel deposited Au : TiO2 nanocomposite thin films is studied. Various gold concentrations have been added to the TiO2 thin films and their properties are compared. All the deposited samples are annealed at different temperatures. The optical density spectra of the films show the formation of gold nanoparticles in the films. The optical bandgap energy of the Au : TiO2 films decreases with increasing Au concentration. The crystalline structure of the nanocomposite films is studied by x-ray diffractometry indicating the formation of gold nanocrystals in... 

    Low temperature nanostructured zinc titanate by an aqueous particulate sol-gel route: Optimisation of heat treatment condition based on Zn:Ti molar ratio

    , Article Journal of the European Ceramic Society ; Volume 30, Issue 4 , 2010 , Pages 947-961 ; 09552219 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Nanocrystalline zinc titanate (ZnTiO3) thin films and powders with purity of 94% were produced at the low sintering temperature of 500 °C and the short sintering time of 1 h by a straightforward aqueous particulate sol-gel route. The effect of Zn:Ti molar ratio was studied on the crystallisation behaviour of zinc titanates. The prepared sols showed a narrow particle size distribution in the range 17-19 nm. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders contained mixtures of the rhombohedral-ZnTiO3, cubic-ZnO, cubic-Zn2TiO4 phases, as well as the anatase-TiO2 and the rutile-TiO2 depending on the sintering temperature and Zn:Ti molar ratio.... 

    Stabilization of nanostructured materials using fine inert ceramic particles

    , Article Ceramics International ; Volume 36, Issue 2 , 2010 , Pages 793-796 ; 02728842 (ISSN) Razavi Tousi, S. S ; Rahaei, M. B ; Abdi, M. S ; Sadrnezhaad, S. K ; Sharif University of Technology
    2010
    Abstract
    Modified versions of the Zener drag equation were obtained by evaluating a non-random distribution of incoherent ceramic particles in a nano-crystalline material. Analytical investigation of particle-boundary correlation indicates that the limiting grain size would be proportional to fV -1/3 for fV larger than 2.96%. The limiting grain size can be obtained by a combination of random and non-random Zener drag pressure in the case of volume fractions smaller than 2.96%