Loading...
Search for: current-density
0.007 seconds
Total 137 records

    Hydrodynamics analysis of Density currents

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 3 , 2008 , Pages 211-226 ; 1728-144X (ISSN) Afshin, H ; Firoozabadi, B ; Rad, M ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Density Current is formed when a fluid with heavier density than the surrounding fluid flows down an inclined bed. These types of flows are common in nature and can be produced by; salinity, temperature inhomogeneities, or suspended particles of silt and clay. Driven by the density difference between inflow and clear water in reservoirs, density current plunges clear water and moves towards a dam, while density current flows on a sloping bed. The vertical spreading due to water entrainment has an important role in determining the propagation rate in the longitudinal direction. In this work, two-dimensional steady-state salt solutions' density currents were investigated by means of... 

    Determination of the Optimal Conditions for Treatment of Lubricating Oils Wastewater in a Continuous Electrocoagulation Reactor

    , M.Sc. Thesis Sharif University of Technology Hosseini, Mehri (Author) ; Fotovat, Farzam (Supervisor)
    Abstract
    Electrocoagulation (EC) is an effective process in the treatment of oily wastewater, however, only a few studies have explored the parameters affecting the efficient design of the reactors employed in this process. In this study, a statistical investigation on the factors affecting the design of a continuous electrocoagulation reactor was performed by running the tests designed based on the design of experiments (DOE) principles. The explored design variables were current density (30-80 A/m2), reactor residence time (10-30 min), and the ratio of anode surface to the reactor volume (15-45 m2/m3), which were optimized by the response surface method (RSM) to maximize the amount of oil removal... 

    Microstructure, mechanical properties, corrosion behavior and cytotoxicity of Mg-Zn-Al-Ca alloys as biodegradable materials

    , Article Journal of Alloys and Compounds ; Vol. 607 , 2014 , Pages 1-10 ; ISSN: 09258388 Homayun, B ; Afshar, A ; Sharif University of Technology
    Abstract
    Recently, considerable attentions have been paid to alloy Mg-4Zn-0.2Ca for biomedical applications due to its suitable biocompatibility and acceptable mechanical properties. In this work, the effects of the addition of different amounts of Al on microstructure, mechanical properties, degradation behavior, and biocompatibility of this alloy were investigated. The corrosion behaviors of the alloys were investigated through polarization tests, chronoamperometry analysis, immersion tests, and EIS experiments. The mechanical properties were analyzed by using tensile tests and compression tests. The results showed that the addition of Al up to 3 wt.% considerably modifies the degradation behaviors... 

    Effects of microhydrophobic porous layer on water distribution in polymer electrolyte membrane fuel cells

    , Article Journal of Fuel Cell Science and Technology ; Vol. 11, Issue. 1 , 2014 ; ISSN: 1550-624X Ahmadi, F ; Roshandel, R ; Sharif University of Technology
    Abstract
    Performance of polymer electrolyte membrane fuel cells (PEMFC) at high current densities is limited to transport reactants and products. Furthermore, large amounts of water are generated and may be condensed due to the low temperature of the PEMFC. Development of a two-phase flow model is necessary in order to predict water flooding and its effects on the PEMFC performance. In this paper, a multiphase mixture model (M2) is used, accurately, to model two-phase transport in porous media of a PEMFC. The cathode side, which includes channel, gas diffusion layer (GDL), microporous layer (MPL), and catalyst layer (CL), is considered as the computational domain. A multidomain approach has been used... 

    MnO2/ordered mesoporous carbon nanocomposite for electrochemical supercapacitor

    , Article Journal of Solid State Electrochemistry ; Vol. 18, issue. 4 , 2014 , pp. 1117-1125 Kiani, M. A ; Khani, H ; Mohammadi, N ; Sharif University of Technology
    Abstract
    The preparation of composite manganese dioxide (MnO2) nanoparticles in an ordered mesoporous carbon (CMK-3) matrix and its use for constructing a new wide-potential-window supercapacitor is reported. CMK-3 is prepared using mesoporous silica as a hard template and sucrose as carbon source. The different ratios of MnO2/CMK-3 composite is synthesized by impregnating CMK-3 with a Mn(NO3)2·4H 2O solution followed by annealing in nitrogen. Physical properties, morphology, and specific surface area were characterized by X-ray diffraction, transmission electron microscopy, and nitrogen sorption measurements, respectively. The electrochemical properties of the composite were studied by cyclic... 

    Elucidation of the structural texture of electrodeposited Ni/SiC nanocomposite coatings

    , Article Journal of Physical Chemistry C ; Volume 116, Issue 6 , January , 2012 , Pages 4105-4118 ; 19327447 (ISSN) Sohrabi, A ; Dolati, A ; Ghorbani, M ; Barati, M. R ; Stroeve, P ; Sharif University of Technology
    2012
    Abstract
    Crystallographic texture is one of the most sensitive parameters for controlling the microstructure of electrodeposited layers. In this work, we study the crystallographic texture of electrodeposited nickel-silicon carbide coatings. The nickel coatings containing SiC nanoparticles and microparticles were electrodeposited from an additive-free sulfate bath containing nickel ions and SiC particles. The effect of current density on the codeposited Ni/SiC was studied. The coatings were analyzed with scanning electron microscopy and X-ray diffraction. Pole figure studies were done to characterize the evolved crystallographic texture. The X-ray scans followed by Rietveld analysis using the... 

    Study of the effect of frequency in pulse electrodeposition on Au-Ni from cyanide-citrate electrolyte by the aim of design of experiment

    , Article Advanced Materials Research, 15 December 2011 through 18 December 2011 ; Volume 410 , December , 2012 , Pages 377-381 ; 10226680 (ISSN) ; 9783037853160 (ISBN) Moakhar, R. S ; Imanieh, I ; Ghorbani, M ; Dolati, A ; Sharif University of Technology
    Abstract
    The aim of this paper is to study the influence of frequency in pulse electrodeposition, on the current efficiency, Ni content and surface morphology of deposits from a novel cyanide-citrate electrolyte with 20 mM gold as KAu(CN) 2 and 7 mM NiSO 4, with the aim of design of experiment by respond surface method (RSM). Frequency was in the range of 1-200 Hz in constant average current density, temperature, and duty cycle of 7 mA/cm 2, 59 °C and 55% respectively. Composition of the deposits was determined by atomic absorption spectroscopy (AAS). Additionally, deposits were characterized by scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDS). It was shown that from... 

    Detemining the thickness of barriers and well of Resonance Tunneling Diodes by specified I-V characteristic

    , Article Applied Mechanics and Materials ; Volume 110-116 , 2012 , Pages 5464-5470 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Shahhoseini, A ; Ghorbanalipour, S ; Faez, R ; Sharif University of Technology
    Abstract
    In this paper, a method of determining physical dimension of Double Barrier Quantum Well (DBQW) of Resonance Tunneling Diodes (RTDs) is presented by using I-V characteristic governing on them. In this procedure, first we have used performance metrics related to RTDs I-V characteristic such as Peak to Valley Current Ratio (PVCR), peak current density (JP), valley current density (JV) and Voltage Swing (VS), and by some other arbitrary points, we have fitted a curve to the RTD current-voltage equation by MATLAB software. Then we have obtained the physical parameter of I-V equation and adjusted some of them with modification coefficients. Next, by choosing the material of barriers and the well... 

    Effect of anode compositions on the current efficiency of zinc electrowinning

    , Article Proceedings - European Metallurgical Conference, EMC 2011 ; Volume 2 , 2011 , Pages 387-396 ; 9783940276377 (ISBN) Dashti, S ; Rashchi, F ; Vahidi, E ; Emami, M ; Khoshnevisan, A ; Sharif University of Technology
    Abstract
    The main goals in zinc electrowinning process are decreasing of power consumption and increasing of current efficiency. The purpose of this research was to investigate effect of different alloy compositions used in production of lead-based anodes on the zinc electrowinning process. The anode compositions prepared and examined in this study were binary alloys Pb - (0.5 and 2 %) Ag and quaternary alloys Pb - 0.5 % Ag - 1 % Ca - 2 % Sn, Pb - 0.5 % Ag - 1 % Ca - 1 % Sn - 1 % Sb and Pb - 0.5 % Ag - 1 % Ca - 1 % Sn - 1 % Bi. The electrowinning experiments were conducted using a laboratory-scale apparatus, at a plating time of 4 hours, a current density of 500 to 1000 A/m2, industrial zinc sulfate... 

    Influence of Substrate, Additives, and Pulse Parameters on Electrodeposition of Gold Nanoparticles from Potassium Dicyanoaurate

    , Article Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science ; Volume 46, Issue 6 , December , 2015 , Pages 2584-2592 ; 10735615 (ISSN) Vahdatkhah, P ; Sadrnezhaad, S. K ; Sharif University of Technology
    Springer Boston  2015
    Abstract
    Gold nanoparticles (AuNPs) of less than 50 nm diameter were electrodeposited from cyanide solution by pulsating electric current on modified copper and indium tin oxide (ITO) films coated on glass. Morphology, size, and composition of the deposited AuNPs were studied by X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. Effects of peak current density, pulse frequency, potassium iodide and cysteine on grain size, and morphology of the AuNPs were determined. Experiments showed that cathode current efficiency increases with the pulse frequency and the iodide ion. Size of the AuNPs increased with the current density. The number of... 

    Control of anode supported SOFCs (solid oxide fuel cells): Part I. mathematical modeling and state estimation within one cell

    , Article Energy ; Volume 90 , October , 2015 , Pages 605-621 ; 03605442 (ISSN) Amedi, H. R ; Bazooyar, B ; Pishvaie, M. R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this paper, a 3-dimensional mathematical model for one cell of an anode-supported SOFC (solid oxide fuel cells) is presented. The model is derived from the partial differential equations representing the conservation laws of ionic and electronic charges, mass, energy, and momentum. The model is implemented to fully characterize the steady state operation of the cell with countercurrent flow pattern of fuel and air. The model is also used for the comparison of countercurrent with concurrent flow patterns in terms of thermal stress (temperature distribution) and quality of operation (current density). Results reveal that the steady-state cell performance curve and output of simulations... 

    Microstructure, Cyclic Deformation and Corrosion Behavior of Laser Welded NiTi Shape Memory Wires

    , Article Journal of Materials Engineering and Performance ; Volume 24, Issue 9 , September , 2015 , Pages 3356-3364 ; 10599495 (ISSN) Mirshekari, G. R ; Kermanpur, A ; Saatchi, A ; Sadrnezhaad, S. K ; Soleymani, A. P ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    The present paper reports the effects of Nd:YAG laser welding on the microstructure, phase transformation, cyclic deformation behavior, and corrosion resistance of Ti-55 wt.% Ni wire. The results showed that the laser welding altered the microstructure of the weld metal which mainly composed of columnar dendrites grown epitaxially from the fusion line. DSC results indicated that the onset of the transformation temperatures of the weld metal differed from that of the base metal. Cyclic stress-strain behavior of laser-welded NiTi wire was comparable to the as-received material; while a little reduction in the pseudo-elastic property was noted. The weld metal exhibited higher corrosion... 

    Hydro-mechanical behavior of undisturbed collapsible loessial soils under different stress state conditions

    , Article Engineering Geology ; Volume 195 , September , 2015 , Pages 28-41 ; 00137952 (ISSN) Garakani, A. A ; Haeri, S. M ; Khosravi, A ; Habibagahi, G ; Sharif University of Technology
    Elsevier  2015
    Abstract
    A conventional triaxial test device was modified to characterize the hydro-mechanical behavior of a loessial soil during isotropic and shear loadings. This device is capable of precise and continuous measurements of water outflow during the application of loading. The tests were performed on "undisturbed" cylindrical specimens, which were taken from loessial deposits in Gorgan, a city in the northeast of Iran. Experimental measurements indicate that the hydro-mechanical behavior of loess is highly affected by the extent of applied mean net stress and the level of suction. During both isotropic and shearing stages of loading, the tested specimens may exhibit collapse, abrupt decrease in... 

    Mechanical and electrochemical behaviors of butt-welded high temperature steel pipes

    , Article Engineering Failure Analysis ; 2016 ; 13506307 (ISSN) Daavari, M ; Vanini, S. A. S ; Fereiduni, E ; Rokni, M. H ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this study, fatigue, corrosion fatigue and electrochemical behaviors of butt-welded A106-B steel pipes were investigated. These pipes were subjected to mechanical and thermal cyclic stresses due to the internal pressure fluctuations and cooling-heating cycles. Residual stress measurements were carried out for three different depths through the thickness and were correlated to the microstructural observations and microhardness measurements. Results showed that the maximum tensile residual stresses existed at the boundary of weld metal and base metal because of the contraction-expansion effects resulting from phase transformations and cooling rate differences. Fatigue fractures occurred at... 

    Optimized coupling of an intermittent DC electric field with a membrane bioreactor for enhanced effluent quality and hindered membrane fouling

    , Article Separation and Purification Technology ; Volume 152 , 2015 , Pages 7-13 ; 13835866 (ISSN) Tafti, A. D ; Seyyed Mirzaii, S. M ; Andalibi, M. R ; Vossoughi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract This article studies a submerged membrane electro-bioreactor (SMEBR), an integrated system embracing biological treatment, electrical coagulation, and membrane filtration, all in one individual reactor, by applying an alternating electric field to a membrane bioreactor (MBR). The alternating electric field has been applied with current densities ranging from 5 to 23 A/m2 under eight different electrical exposure modes. The results indicate that under the optimum condition with a current density of 12.5 A/m2 and an exposure mode of (415 s OFF-185 s ON), the COD and phosphate removals would be respectively 4% and 43% more compared to an unmodified MBR system. Also at the same current... 

    Numerical investigation on the behavior of the gravity waterfront structures under earthquake loading

    , Article Ocean Engineering ; Volume 106 , September , 2015 , Pages 152-160 ; 00298018 (ISSN) Khosrojerdi, M ; Pak, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract Lateral Spreading, which usually occurs as a consequence of liquefaction in gently sloped loose saturated sand layers, is known to be a major source of earthquake-induced damages to structures such as quay walls, bridge piers, pipelines, and highway/railways. Therefore evaluation of the liquefaction potential and using appropriate methods for prediction of the adverse consequences of lateral spreading is of great importance. In this study, numerical modeling has been used to study lateral spreading phenomenon behind rigid waterfront structures. Coupled dynamic field equations of the extended Biot's theory with u-P formulation are used for simulating the phenomenon. A fully coupled... 

    Hierarchical Co3O4/Co(OH)2 nanoflakes as a supercapacitor electrode: experimental and semi-empirical model

    , Article ACS Applied Materials and Interfaces ; Volume 7, Issue 21 , 2015 , Pages 11172-11179 ; 19448244 (ISSN) Qorbani, M ; Naseri, N ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    In this research, facile and low cost synthesis methods, electrodeposition at constant current density and anodization at various applied voltages, were used to produce hierarchical cobalt oxide/hydroxide nanoflakes on top of porous anodized cobalt layer. The maximum electrochemical capacitance of 601 mF cm-2 at scan rate of 2 mV s-1 was achieved for 30 V optimized anodization applied voltage with high stability. Morphology and surface chemical composition were determined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. The size, thickness, and density of nanoflakes, as well as length of the porous anodized Co layer were measured about 460 ± 45 nm,... 

    Modification of nanostructured anodized aluminum coatings by pulse current mode

    , Article Surface and Coatings Technology ; Volume 278 , 2015 , Pages 48-55 ; 02578972 (ISSN) Mohammadi, I ; Afshar, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, the effects of pulse current mode on corrosion resistance and mechanical properties of anodized coatings were explored. Thickness and hardness measurements, polarization and electrochemical impedance spectroscopy were employed to take mechanical and corrosion behaviors of the anodized coatings into consideration. Also, field-emission scanning electron microscopy (FE-SEM) was utilized to characterize the surface morphology of the coatings. It was shown that in short anodizing times, coating thickness is controlled by the heat concentrated on coating. Although at prolonged anodizing times, the coating thickness is affected by average current density. Hardness measurements showed... 

    Hydrogen failure sensitivity of A516-Gr70 and API 5L-X70 steels in sour environments

    , Article Anti-Corrosion Methods and Materials ; Volume 62, Issue 5 , 2015 , Pages 294-300 ; 00035599 (ISSN) Taheri, H ; Dolati, A ; Beidokhti, B ; Sharif University of Technology
    Emerald Group Publishing Ltd  2015
    Abstract
    Purpose – This paper aims to clarify the corrosion behavior of two famous structural steels in sour environment. These steels have a vast application in oil and gas industries. The study aims to find the effect of different concentrations of sour solution on the origin of crack in these steels. Design/methodology/approach – After preparation of specimens, different sour solutions were made using the synthetic brine (according to National Association of Corrosion Engineers [NACE], Technical Committee Report 1D182) and various amounts of Na2S.9H2O and CH3COOH. The polarization test was done by Potansiostat apparatus model Zahner-IM6 at two temperatures, 25°C... 

    Modeling, design and fabrication of non-uniform catalyst layers for PEM fuel cells

    , Article ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2010, 14 June 2010 through 16 June 2010 ; Volume 1 , 2010 , Pages 697-705 ; 9780791844045 (ISBN) Roshandel, R ; Advanced Energy Systems Division ; Sharif University of Technology
    Abstract
    Catalyst layers are one of the most important parts of the PEM fuel cells and the cell performance is highly related to its structure. Catalyst layers are generally made by uniform distribution of catalyst on carbon cloth or carbon papers to form electrodes. In this paper, the idea of using non-uniform catalyst layer instead of common uniform catalyst layers is presented and simulated by a two-dimensional steady-state computational model. The model accounts for species transport, electrochemical kinetics, charge transport and current density distribution. A fuel cell test stand is designed and built to facilitate experimental validation of the model. Modeling results show that electrical...