Loading...
Search for: cyclic-voltammetry
0.016 seconds
Total 172 records

    Fabrication of modified TiO 2 nanoparticle carbon paste electrode for simultaneous determination of dopamine, uric acid, and l-cysteine

    , Article Journal of Solid State Electrochemistry ; Volume 13, Issue 9 , 2009 , Pages 1433-1440 ; 14328488 (ISSN) Mazloum Ardakani, M ; Talebi, A ; Naeimi, H ; Nejati Barzoky, M ; Taghavinia, N ; Sharif University of Technology
    2009
    Abstract
    A carbon paste electrode, modified with 2, 2″-[1,7- hepthandiylbis(nitriloethylidyne)]-bis-hydroquinone and TiO 2 nanoparticles, was used for the simultaneous determination of dopamine (DA), uric acid (UA), and l-cysteine. The study was carried out by using cyclic voltammetry, chronoamperometry, and square wave voltammetry (SWV) techniques. Some kinetic parameters such as the electron transfer coefficient (α) and heterogeneous rate constant (k s) were also determined for the DA oxidation. A dynamic range of 8.0-1400 μM, with the detection limit of 8.4∈×∈10 -7 M for DA, was obtained using SWV (pH∈=∈7.0). The prepared electrode was successfully applied for the determination of DA, UA, and... 

    Fabrication of an electrochemical sensor based on the electrodeposition of Pt nanoparticles on multiwalled carbon nanotubes film for voltammetric determination of ceftriaxone in the presence of lidocaine, assisted by factorial-based response-surface methodology

    , Article Journal of Solid State Electrochemistry ; Vol. 18, issue. 1 , 2014 , p. 77-88 Shahrokhian, S ; Hosseini-Nassab, N ; Kamalzadeh, Z ; Sharif University of Technology
    Abstract
    A glassy carbon electrode (GCE) is modified with platinum nanoparticle (PtNPs) decorated multiwalled carbon nanotube (MWCNT). The modified electrode is applied for the determination of ceftriaxone (CFX) in the presence of lidocaine. Different methods were used to characterize the surface morphology of the modified electrode. The electrochemical behavior of CFX was investigated at GCE, MWCNT/GCE and PtNPs/MWCNT/GCE. A factorial-based response-surface methodology was used to find out the optimum conditions with minimum number of experiments. Under the optimized conditions, oxidation peak currents increased linearly with CFX concentration in the range of 0.01-10.00 μM with a detection limit of... 

    Fabrication of a modified electrode based on Fe3 O4 NPs/MWCNT nanocomposite: Application to simultaneous determination of guanine and adenine in DNA

    , Article Bioelectrochemistry ; Volume 86 , 2012 , Pages 78-86 ; 15675394 (ISSN) Shahrokhian, S ; Rastgar, S ; Amini, M. K ; Adeli, M ; Sharif University of Technology
    Abstract
    Multi-walled carbon nanotubes decorated with Fe 3O 4 nanoparticles (Fe 3O 4NPs/MWCNT) were prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electro-oxidation of adenine and guanine on the modified electrode were investigated by linear sweep voltammetry. The results indicate a remarkable increase in the oxidation peak currents together with negative shift in the oxidation peak potentials for both adenine and guanine, in comparison to the bare glassy carbon electrode (GCE). The surface morphology and nature of the composite film deposited on GCE were characterized by transmission electron microscopy, atomic force microscopy,... 

    Enhanced hardness and corrosion resistance of Zn/SiO2 films by electrodeposition

    , Article Journal of the Electrochemical Society ; Volume 162, Issue 9 , 2015 , Pages D480-D485 ; 00134651 (ISSN) Ghorbani, M ; Salehi, F ; Razavizadeh, O ; Sharif University of Technology
    Electrochemical Society Inc  2015
    Abstract
    The electrodeposition of Zn-SiO2 nanocomposites has been investigated with different electrolytes: triethanolamine as a dispersing agent, and cetyl trimethylammonium bromide and dodecyl dimethylamine oxide as ionic (cationic) and non-ionic surfactants. Appropriate electrophoretic potentials for each solution were obtained using cyclic voltammetry. The results show that the most stable SiO2 nanoparticles with zeta potential range of 25 to 41 mV, along with highest SiO2 mobility of 0.4 to 0.7 m2/V.s were dispersed by triethanolamine in ethanol and the resulting coating adhesion improved up to 5.87 MPa in the standard pull off test, with the enhanced hardness of... 

    Enhanced electrochemical activity of a hollow carbon sphere/polyaniline-based electrochemical biosensor for HBV DNA marker detection

    , Article ACS Biomaterials Science and Engineering ; Volume 5, Issue 5 , 2019 , Pages 2587-2594 ; 23739878 (ISSN) Salimian, R ; Shahrokhian, S ; Panahi, S ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Herein, we present a novel, simple, and ultrasensitive electrochemical DNA (E-DNA) sensor based on hollow carbon spheres (HCS) decorated with polyaniline (PANI). A thiolated 21-mer oligonucleotide, characteristic of HBV DNA, is immobilized via electrodeposited gold nanoparticles on HCS-PANI. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) are used to characterize the electrochemical properties of the prepared nanocomposite. Scanning electron microscopy is employed to investigate the morphological texture of the fabricated modifier. An enhanced intrinsic signal of PANI is probed to evaluate the biosensing ability of the prepared... 

    Electrodeposition of Pt-Ru nanoparticles on multi-walled carbon nanotubes: Application in sensitive voltammetric determination of methyldopa

    , Article Electrochimica Acta ; Volume 58, Issue 1 , 2011 , Pages 125-133 ; 00134686 (ISSN) Shahrokhian, S ; Rastgar, S ; Sharif University of Technology
    2011
    Abstract
    A modified glassy carbon electrode, prepared by potentiostatic electrodeposition of platinum-ruthenium nanoparticles (Pt-RuNPs) onto a multi-walled carbon nanotube (MWCNT) layer, offers dramatic improvements in the stability and sensitivity of voltammetric responses toward methyldopa (m-dopa) compared to glassy carbon electrodes individually coated with MWCNT or Pt-RuNPs. The surface morphology and nature of the hybrid film (Pt-RuNPs/MWCNT) deposited on glassy carbon electrodes was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. A remarkable enhancement in the microscopic area of the electrode together... 

    Electrodeposition of Ni/WC nano composite in sulfate solution

    , Article Materials Chemistry and Physics ; Volume 129, Issue 3 , 2011 , Pages 746-750 ; 02540584 (ISSN) Mohajeri, S ; Dolati, A ; Rezagholibeiki, S ; Sharif University of Technology
    Abstract
    Metal matrix composite coatings have gained great attention due to their exclusive properties. They have shown the properties of a metallic host material modified by addition of a second phase. In electrodeposition of Ni/WC nano composite, nickel was deposited on the substrates by DC electrodeposition in Watt's based bath containing nickel sulfate, nickel chloride, boric acid and sodium dodecyl sulfate. WC content in the coating was determined by different parameters such as current density, powder content and surfactant amount. Mechanism of electrodeposition was analyzed by cyclic voltammetry and was confirmed by Guglielmi model. Surface morphology was studied by scanning electron... 

    Electrocrystallization of Ni nanocones from chloride-based bath using crystal modifier by electrochemical methods

    , Article Journal of Alloys and Compounds ; Volume 818 , 2020 Barati Darband, G ; Aliofkhazraei, M ; Dolati, A ; Rouhaghdam, A. S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The early stages of nucleation and growth of nanostructures can control the shape and final size of the fabricated nanostructure. Therefore, the study of the nucleation and growth mechanism of nanostructures is of great importance. The purpose of this study is to investigate the nucleation and growth mechanism of nickel nanocones from a chloride-based bath containing ethylene ammonium dichloride as a crystal modifier. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry tests were employed to investigate the nucleation and growth mechanism and also the mechanism of crystal modifier performance on the growth of nanocones. Electrochemical studies revealed... 

    Electrochemistry of levo-thyroxin on edge-plane pyrolytic graphite electrode: application to sensitive analytical determinations

    , Article Electroanalysis ; Volume 23, Issue 8 , JUL , 2011 , Pages 1875-1880 ; 10400397 (ISSN) Khafaji, M ; Shahrokhian, S ; Ghalkhani, M ; Sharif University of Technology
    2011
    Abstract
    The electrochemical response of sodium levo-thyroxin (T4) at the surface of an edge plane pyrolytic graphite (EPPG) electrode is investigated using cyclic voltammetric technique in the presence of 0.1M HCl as supporting electrolyte. T4 underwent totally irreversible oxidation at this system and a well-defined peak at 821mV was obtained. Compared to the signals obtained in the optimized conditions at bare glassy carbon and carbon paste electrodes, the oxidation current of T4 at an EPPG electrode was greatly enhanced. The electrochemical process of T4 was explored and the experimental conditions were optimized. The oxidation peak current represented a linear dependence on T4 concentration from... 

    Electrochemical synthesis of reduced graphene oxide/TiO2 nanotubes/Ti for high-performance supercapacitors

    , Article Ionics ; Volume 21, Issue 2 , 2014 , Pages 525-531 ; ISSN: 09477047 Gobal, F ; Faraji, M ; Sharif University of Technology
    Abstract
    RGO/TiO2NTs/Ti electrodes with high surface area and good capacitive characteristics were prepared by simple electrochemical reduction of graphene oxide (GO) onto the previously formed TiO2 nanotubes. Microstructure studies show that reduced graphene oxide (RGO) having high surface area has been deposited onto the TiO2NT arrays. The electrochemical capacitive behaviors of the obtained electrodes were investigated by cyclic voltammetry (CV), galvanostatic charge–discharge studies, and electrochemical impedance spectroscopy (EIS) in 1 M H2SO4 solution. The electrochemical data demonstrated that the electrodes displayed specific capacitance of 410 F g−1 at the current density of 50 A g−1 and... 

    Electrochemical study of Azathioprine at thin carbon nanoparticle composite film electrode

    , Article Electrochemistry Communications ; Volume 11, Issue 7 , 2009 , Pages 1425-1428 ; 13882481 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Sharif University of Technology
    2009
    Abstract
    Thin carbon nanoparticle/Nafion film (CNP/N), as a novel electrode material, is formed on the surface of the glassy carbon electrode in a simple solvent evaporation process. The electrochemical behavior of Azathioprine (Aza) at the CNP/N-modified electrode is investigated in detail by the means of cyclic voltammetry. During the electrochemical reduction of Aza, an irreversible cathodic peak is appeared. Cyclic voltammetric studies indicated that the reduction process has an irreversible and adsorption-like behavior. The observed reduction peak is attributed to a four-electron process referring to the reduction of nitro group to the corresponding hydroxylamine. The prepared electrode showed... 

    Electrochemical studies of the pitting corrosion of tin in citric acid solution containing Cl-

    , Article Electrochimica Acta ; Volume 53, Issue 13 , 2008 , Pages 4528-4536 ; 00134686 (ISSN) Jafarian, M ; Gobal, F ; Danaee, I ; Biabani, R ; Mahjani, M. G ; Sharif University of Technology
    2008
    Abstract
    The electrochemical behavior of a tin electrode in citric acid solutions of different concentrations was studied by electrochemical techniques. The E/I curves showed that the anodic behavior of tin exhibits active/passive transition. Passivation is due to the formation of Sn(OH)4 and/or SnO2 film on the electrode surface. Addition of NaCl to citric acid solution, enhances the active dissolution of tin and tends to breakdown the passivity at a certain breakdown potential. Cyclic voltammetry and galvanostatic measurements allow the pitting potential (Epit) and the repassivation potential (Erp) to be determined. Potentiostatic measurements showed that the overall anodic processes can be... 

    Electrochemical sensors based on functionalized carbon nanotubes modified with platinum nanoparticles for the detection of sulfide ions in aqueous media

    , Article Journal of Chemical Sciences ; Volume 131, Issue 3 , 2019 ; 09743626 (ISSN) Mohajeri, S ; Dolati, A ; Salmani Rezaie , S ; Sharif University of Technology
    Springer  2019
    Abstract
    Abstract : Vertically aligned carbon nanotube (CNT) arrays were synthesized by thermal chemical vapor deposition (CVD) on stainless steel substrates coated by cobalt nanoparticles as catalyst. Morphological and elemental analyses conducted by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) revealed that bamboo-like CNTs were blocked by Co nanoparticles at the tips. The fabricated nanotubes underwent functionalization by electrochemical oxidation in sulfuric acid, and the subsequent structural studies, as well as Fourier transform infrared (FTIR) spectroscopy confirmed that the tips of functionalized CNTs were opened while oxygenated functional groups were... 

    Electrochemical preparation of over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination

    , Article Electrochimica Acta ; Volume 57, Issue 1 , 2011 , Pages 132-138 ; 00134686 (ISSN) Shahrokhian, S ; Saberi, R. S ; Sharif University of Technology
    Abstract
    A composite film constructed of surfactant doped over-oxidized polypyrrole and multi-walled carbon nanotube was prepared on the surface of glassy carbon electrode by the electro-polymerization method. Surface characterization of the modified electrode was performed by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectrometry. The investigations have been proved that the over-oxidation of the modifier film resulted in a porous thin layer that improves the interlayer diffusion mechanism for the electroactive species. On the other hand, the negative charge density on the surface of the electrode excludes the negative analytes (e.g. ascorbate and Fe(CN)63?/4?)... 

    Electrochemical preparation of a molecularly imprinted polypyrrole modified pencil graphite electrode for the determination of phenothiazine in model and real biological samples

    , Article Talanta ; Volume 144 , November , 2015 , Pages 456-465 ; 00399140 (ISSN) Nezhadali, A ; Rouki, Z ; Nezhadali, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract A sensitive electrochemical sensor for determination of phenothiazine (PTZ) was introduced based on molecularly imprinted polymer (MIP) film. A computational study was performed to evaluate the template-monomer geometry and interaction energy in the prepolymerization mixture. The electrode was prepared during electropolymerization of pyrrole (Py) on a pencil graphite electrode (PGE) by cyclic voltammetry (CV) technique. The quantitative measurements were performed using differential pulse voltammetry (DPV) in Britton-Robinson (BR) buffer solutions using 60% (v/v) acetonitrile-water (ACN/H2O) binary solvent. The effect of important parameters like pH, monomer... 

    Electrochemical oxidation of saccharose on copper (hydr)oxide-modified electrode in alkaline media

    , Article Cuihua Xuebao/Chinese Journal of Catalysis ; Volume 31, Issue 11 , 2010 , Pages 1351-1357 ; 02539837 (ISSN) Jafarian, M ; Rashvand Avei, M ; Danaee, I ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    2010
    Abstract
    A stable copper (hydr)oxide-modified electrode was prepared in 0.5 mol/L NaOH solution by cyclic voltammetry in the range of -250 to 1000 mV. It can be used for electrochemical studies in the range of -250 to 1000 mV without interfering peaks because there is no oxidation of copper. During an anodic potential sweep, the electro-oxidation of saccharose on Cu occurred by the formation of CuIII and this reaction also occurred in the early stages of the reversed cycle until it is stopped by the negative potentials. A mechanism based on the electro-chemical generation of CuIII active sites and their subsequent consumption by saccharose was proposed, and the rate law and kinetic parameters were... 

    Electrochemical investigation of electrodeposited platinum nanoparticles on multi walled carbon nanotubes for methanol electro-oxidation

    , Article Journal of Chemical Sciences ; Volume 129, Issue 9 , 2017 , Pages 1399-1410 ; 09743626 (ISSN) Mokarami Ghartavol, H ; Moakhar, R. S ; Dolati, A ; Sharif University of Technology
    Abstract
    Abstract: The electrodeposition of platinum nanoparticles (PtNPs) on multiwall carbon nanotubes (MWCNTs)/fluorine-doped tin oxide glass (FTO) was investigated. Nucleation and growth mechanisms were studied via Scharifker and Hills model. Chronoamperometry results clearly show that the electrodeposition processes are diffusion-controlled and the diffusion coefficient is 1.5×10-5cm2/s. The semi-spherical particles with lamellar morphology were observed in 1M H 2SO 4, while a petal shape was discerned in 0.5M H 2SO 4. Also, dispersion, size, and uniformity of PtNPs were investigated, where the finer distribution of PtNPs with the average size less than 100 nm was obtained in 0.5M H 2SO 4... 

    Electrochemical investigation of electrodeposited Fe-Pd alloy thin films

    , Article Electrochimica Acta ; Volume 56, Issue 1 , 2010 , Pages 483-490 ; 00134686 (ISSN) Rezaei, M ; Ghorbani, M ; Dolati, A ; Sharif University of Technology
    Abstract
    In the present study, the electrodeposition of Fe, Pd and Fe-Pd alloys, in alkaline solutions, has been investigated. Using ammonium hydroxide and trisodium citrate as the complexing agents, it has been shown that the co-deposition of Fe and Pd is achieved due to diminishing the difference between the reduction potentials of these two metals. Cyclic voltammetry results clearly show that the electrodeposition processes are diffusion-controlled and the diffusion coefficients of Fe2+ and Pd2+ are 1.11 × 10-6 and 2.19 × 10-5 cm2 s -1, respectively. The step potential experiments reveal that nucleation mechanism is instantaneous with a typical three-dimensional (3D) growth. At low overpotentials,... 

    Electrochemical determination of piroxicam on the surface of pyrolytic graphite electrode modified with a film of carbon nanoparticle-chitosan

    , Article Microchimica Acta ; Volume 170, Issue 1 , August , 2010 , Pages 141-146 ; 00263672 (ISSN) Shahrokhian, S ; Jokar, E ; Ghalkhani, M ; Sharif University of Technology
    2010
    Abstract
    The electrochemical behavior of the anti-inflammatory drug piroxicam is studied at the surface of a plain pyrolytic graphite electrode modified with chitosan-doped carbon nanoparticles. An electroactive surface was produced by drop-casting a suspension of the modifier and characterized by atomic force microscopy. A remarkable enhancement is found in studies on the cyclic voltammetric response towards piroxicam. This is described on the basis of the thin-layer mass transport regimes within the porous films, which leads to a considerable increase in the active surface area of the electrode. The electrode shows a linear response to piroxicam in the range of 0.05-50 μM, with a detection limit of... 

    Electrochemical determination of l-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron

    , Article Journal of Electroanalytical Chemistry ; Volume 636, Issue 1-2 , 2009 , Pages 40-46 ; 15726657 (ISSN) Shahrokhian, S ; Asadian, E ; Sharif University of Technology
    Elsevier  2009
    Abstract
    There are high attractions in the development of conducting polymer (CP) coatings to improve the electrochemical properties and biocompatibility of electrodes in the area of biosensors. A new type of the modified electrodes is prepared in a layer-by-layer process by using multi-walled carbon nanotube (MWCNT) and poly-pyrrole. In this procedure, the glassy carbon electrode is casted by a drop suspension of MWCNT, which leads to form a thin film of nanotube on its surface. In the second step, electrochemical polymerization of pyrrole in the presence of tiron (used as doping anion) is performed on the surface of the MWCNT pre-coated electrode. The modification procedure led to fabrication of a...