Loading...
Search for:
cytology
0.008 seconds
Total 214 records
Graphene oxide negatively regulates cell cycle in embryonic fibroblast cells
, Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 6201-6209 ; Akhavan, O ; Shamsara, M ; Ansari Majd, S ; Sanati, M. H ; Daliri Joupari, M ; Farmany, A ; Sharif University of Technology
Dove Medical Press Ltd
2020
Abstract
Background: Unique properties of graphene and its derivatives make them attractive in the field of nanomedicine. However, the mass application of graphene might lead to side effects, which has not been properly addressed in previous studies, especially with regard to its effect on the cell cycle. Methods: The effect of two concentrations (100 and 200 μg/mL) of nano-and microsized graphene oxide (nGO and mGO) on apoptosis, cell cycle, and ROS generation was studied. The effect of both sizes on viability and genotoxicity of the embryonic fibroblast cell cycle was evaluated. MTT and flow cytometry were applied to evaluate the effects of graphene oxide (GO) nanosheets on viability of cells....
MicroRNA profiling reveals important functions of miR-125b and let-7a during human retinal pigment epithelial cell differentiation
, Article Experimental Eye Research ; Volume 190 , 2020 ; Satarian, L ; Moradi, S ; Sharifi Zarchi, A ; Günther, S ; Kamal, A ; Totonchi, M ; Mowla, S. J ; Braun, T ; Baharvand, H ; Sharif University of Technology
Academic Press
2020
Abstract
Retinal pigment epithelial (RPE) cells are indispensable for eye organogenesis and vision. To realize the therapeutic potential of in vitro-generated RPE cells for cell-replacement therapy of RPE-related retinopathies, molecular mechanisms of RPE specification and maturation need to be investigated. So far, many attempts have been made to decipher the regulatory networks involved in the differentiation of human pluripotent stem cells into RPE cells. Here, we exploited a highly-efficient RPE differentiation protocol to determine global expression patterns of microRNAs (miRNAs) during human embryonic stem cell (hESC) differentiation into RPE using small RNA sequencing. Our results revealed a...
Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering
, Article International Journal of Biological Macromolecules ; Volume 180 , 2021 , Pages 692-708 ; 01418130 (ISSN) ; Mashayekhan, S ; Baheiraei, N ; Pourjavadi, A ; Sharif University of Technology
Elsevier B.V
2021
Abstract
Injectable hydrogels which mimic the physicochemical and electromechanical properties of cardiac tissue is advantageous for cardiac tissue engineering. Here, a newly-developed in situ forming double-network hydrogel derived from biological macromolecules (oxidized alginate (OA) and myocardial extracellular matrix (ECM)) with improved mechanical properties and electrical conductivity was optimized. 3-(2-aminoethyl amino) propyltrimethoxysilane (APTMS)-functionalized reduced graphene oxide (Amine-rGO) was added to this system with varied concentrations to promote electromechanical properties of the hydrogel. Alginate was partially oxidized with an oxidation degree of 5% and the resulting OA...
Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces
, Article Journal of Biomedical Materials Research - Part A ; Volume 101, Issue 10 , 2013 , Pages 2796-2807 ; 15493296 (ISSN) ; Simchi, A ; Dunlop, J. W. C ; Fratzl, P ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
2013
Abstract
Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were...
Manipulating failure mechanism of rapid prototyped scaffolds by changing nodal connectivity and geometry of the pores
, Article Journal of Biomechanics ; Volume 45, Issue 16 , 2012 , Pages 2866-2875 ; 00219290 (ISSN) ; Bagheri, R ; Zehtab Yazdi, A ; Sharif University of Technology
2012
Abstract
The performance of cellular solids in biomedical applications relies strongly on a detailed understanding of the effects of pore topology on mechanical properties. This study aims at characterizing the failure mechanism of scaffolds based on nodal connectivity (number of struts that meet in joints) and geometry of the pores. Plastic models of scaffolds having the same relative density but different cubic and trigonal unit cells were designed and then fabricated via three dimensional (3-D) printing. Unit cells were repeated in different arrangements in 3-D space. An in-situ imaging technique was utilized to study the progressive deformation of the scaffold models. Different nodal...
Size-dependent genotoxicity of graphene nanoplatelets in human stem cells
, Article Biomaterials ; Volume 33, Issue 32 , 2012 , Pages 8017-8025 ; 01429612 (ISSN) ; Ghaderi, E ; Akhavan, A ; Sharif University of Technology
2012
Abstract
Reduced graphene oxide nanoplatelets (rGONPs) were synthesized by sonication of covalently PEGylated GO sheets followed by a chemical reduction using hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs), as a fundamental factor in tissue engineering, were isolated from umbilical cord blood (as a recently proposed source for extracting fresh hMSCs) to investigate, for the first time, the size-dependent cyto- and geno-toxic effects of the rGONPs on the cells. The cell viability test showed significant cell destructions by 1.0 μg/mL rGONPs with average lateral dimensions (ALDs) of 11±4 nm, while the rGO sheets with ALDs of 3.8±0.4 μm could exhibit a significant cytotoxic...
Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors
, Article Colloids and Surfaces B: Biointerfaces ; Volume 126 , 2015 , Pages 313-321 ; 09277765 (ISSN) ; Ghaderi, E ; Shirazian, S. A ; Sharif University of Technology
Abstract
Reduced graphene oxide nanomeshes (rGONMs), as p-type semiconductors with band-gap energy of ~1. eV, were developed and applied in near infrared (NIR) laser stimulation of human neural stem cells (hNSCs) into neurons. The biocompatibility of the rGONMs in growth of hNSCs was found similar to that of the graphene oxide (GO) sheets. Proliferation of the hNSCs on the GONMs was assigned to the excess oxygen functional groups formed on edge defects of the GONMs, resulting in superhydrophilicity of the surface. Under NIR laser stimulation, the graphene layers (especially the rGONMs) exhibited significant cell differentiations, including more elongations of the cells and higher differentiation of...
Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models
, Article Journal of Materials Science: Materials in Medicine ; Volume 28, Issue 5 , 2017 , 73 ; 09574530 (ISSN) ; Eslahi, N ; Mehdipour, A ; Mohammadi, M ; Akbari, M ; Samadikuchaksaraei, A ; Simchi, A ; Sharif University of Technology
Springer New York LLC
2017
Abstract
Abstract: In recent years, temporary skin grafts (TSG) based on natural biopolymers modified with carbon nanostructures have received considerable attention for wound healing. Developments are required to improve physico-mechanical properties of these materials to match to natural skins. Additionally, in-deep pre-clinical examinations are necessary to ensure biological performance and toxicity effect in vivo. In the present work, we show superior acute-wound healing effect of graphene oxide nanosheets embedded in ultrafine biopolymer fibers (60 nm) on adult male rats. Nano-fibrous chitosan-based skin grafts crosslinked by Genepin with physico-mechanical properties close to natural skins were...
Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing
, Article Advanced Drug Delivery Reviews ; Volume 123 , 2018 , Pages 33-64 ; 0169409X (ISSN) ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Sahandi Zangabad, K ; Ghamarypour, A ; Aref, A. R ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
Elsevier B.V
2018
Abstract
According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally...
Simultaneous controlled release of 5-FU, DOX and PTX from chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX triaxial nanofibers for breast cancer treatment in vitro
, Article Colloids and Surfaces B: Biointerfaces ; Volume 179 , 2019 , Pages 495-504 ; 09277765 (ISSN) ; Hosseini, S ; Mahboobnia, K ; Boloursaz, L. A ; Moradi, M ; Irani, M ; Sharif University of Technology
Elsevier B.V
2019
Abstract
In the present study, the tri-layer nanofibers were synthesized via triaxial electrospinning process to control the sustained delivery of Doxorubicin (DOX), Paclitaxel (PTX) and 5- fluorouracil (5-FU) anticancer drugs from nanofibers. The 5-FU molecules were incorporated into the core solution (chitosan/polyvinyl alcohol (CS/PVA)) to fabricate the CS/PVA/5-FU inner layer of nanofibers. The intermediate layer was prepared from poly(lactic acid)/chitosan (PLA/CS) nanofibers. The DOX and PTX molecules were initially loaded into the g-C3N4 nanosheets and following were incorporated into the PLA/CS solution to fabricate the outer layer of nanofibers. The synthesized nanosheets and nanofibers were...
Bioinspired nanofiber scaffold for differentiating bone marrow-derived neural stem cells to oligodendrocyte-like cells: Design, fabrication, and characterization
, Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 3903-3920 ; Mashayekhan, S ; Abbaszadeh, H. A ; Ansarizadeh, M ; Khoramgah, M. S ; Rahimi Movaghar, V ; Sharif University of Technology
Dove Medical Press Ltd
2020
Abstract
Background: Researchers are trying to study the mechanism of neural stem cells (NSCs) differentiation to oligodendrocyte-like cells (OLCs) as well as to enhance the selective differentiation of NSCs to oligodendrocytes. However, the limitation in nerve tissue acces-sibility to isolate the NSCs as well as their differentiation toward oligodendrocytes is still challenging. Purpose: In the present study, a hybrid polycaprolactone (PCL)-gelatin nanofiber scaffold mimicking the native extracellular matrix and axon morphology to direct the differentiation of bone marrow-derived NSCs to OLCs was introduced. Materials and Methods: In order to achieve a sustained release of T3, this factor was...
Biomimetic proteoglycan nanoparticles for growth factor immobilization and delivery
, Article Biomaterials Science ; Volume 8, Issue 4 , 2020 , Pages 1127-1136 ; Mostafavi, E ; Shokrgozar, M. A ; Tamjid, E ; Webster, T. J ; Annabi, N ; Simchi, A ; Sharif University of Technology
Royal Society of Chemistry
2020
Abstract
The delivery of growth factors is often challenging due to their short half-life, low stability, and rapid deactivation. In native tissues, the sulfated residual of glycosaminoglycan (GAG) polymer chains of proteoglycans immobilizes growth factors through the proteoglycans'/proteins' complexation with nanoscale organization. These biological assemblies can influence growth factor-cell surface receptor interactions, cell differentiation, cell-cell signaling, and mechanical properties of the tissues. Here, we introduce a facile procedure to prepare novel biomimetic proteoglycan nanocarriers, based on naturally derived polymers, for the immobilization and controlled release of growth factors....
Defining microRNA signatures of hair follicular stem and progenitor cells in healthy and androgenic alopecia patients
, Article Journal of Dermatological Science ; Volume 101, Issue 1 , 2021 , Pages 49-57 ; 09231811 (ISSN) ; Nilforoushzadeh, M. A ; Youssef, K. K ; Sharifi Zarchi, A ; Moradi, S ; Khosravani, P ; Aghdami, R ; Taheri, P ; Hosseini Salekdeh, G ; Baharvand, H ; Aghdami, N ; Sharif University of Technology
Elsevier Ireland Ltd
2021
Abstract
Background: The exact pathogenic mechanism causes hair miniaturization during androgenic alopecia (AGA) has not been delineated. Recent evidence has shown a role for non-coding regulatory RNAs, such as microRNAs (miRNAs), in skin and hair disease. There is no reported information about the role of miRNAs in hair epithelial cells of AGA. Objectives: To investigate the roles of miRNAs affecting AGA in normal and patient's epithelial hair cells. Methods: Normal follicular stem and progenitor cells, as well as follicular patient's stem cells, were sorted from hair follicles, and a miRNA q-PCR profiling to compare the expression of 748 miRNA (miRs) in sorted cells were performed. Further, we...
Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systems
, Article Colloids and Surfaces B: Biointerfaces ; Volume 182 , 2019 ; 09277765 (ISSN) ; Taebnia, N ; Yaghmaei, S ; Shahbazi, M. A ; Mehrali, M ; Dolatshahi Pirouz, A ; Arpanaei, A ; Sharif University of Technology
Elsevier B.V
2019
Abstract
Great advantages bestowed by mesoporous silica nanoparticles (MSNs) including high surface area, tailorable pore diameter and surface chemistry, and large pore volume render them as efficient tools in biomedical applications. Herein, MSNs with different surface chemistries were synthesized and investigated in terms of biocompatibility and their impact on the morphology of bone marrow-derived mesenchymal stem cells both in 2D and 3D culture systems. Bare MSNs (BMSNs) were synthesized by template removing method using tetraethylorthosilicate (TEOS) as a precursor. The as-prepared BMSNs were then used to prepare amine-functionalized (AMSNs), carboxyl-functionalized (CMSNs) and polymeric...