Loading...
Search for: cytology
0.012 seconds
Total 214 records

    Cell-imprinted substrates act as an artificial niche for skin regeneration

    , Article ACS Applied Materials and Interfaces ; Vol. 6, Issue. 15 , 2014 , Pages 13280-13292 ; ISSN: 19448244 Mashinchian, O ; Bonakdar, S ; Taghinejad, H ; Satarifard, V ; Heidari, M ; Majidi, M ; Sharifi, S ; Peirovi, A ; Saffar, S ; Taghinejad, M ; Abdolahad, M ; Mohajerzadeh, S ; Shokrgozar, M. A ; Rezayat, S. M ; Ejtehadi M. R ; Dalby, M. J ; Mahmoudi, M ; Sharif University of Technology
    Abstract
    Bioinspired materials can mimic the stem cell environment and modulate stem cell differentiation and proliferation. In this study, biomimetic micro/nanoenvironments were fabricated by cell-imprinted substrates based on mature human keratinocyte morphological templates. The data obtained from atomic force microscopy and field emission scanning electron microscopy revealed that the keratinocyte-cell-imprinted poly(dimethylsiloxane) casting procedure could imitate the surface morphology of the plasma membrane, ranging from the nanoscale to the macroscale, which may provide the required topographical cell fingerprints to induce differentiation. Gene expression levels of the genes analyzed... 

    Analyses of mass and heat transport interactions in a direct methanol fuel cell

    , Article International Journal of Hydrogen Energy ; Vol. 39, issue. 21 , July , 2014 , p. 11224-11240 ; ISSN: 03603199 Kalantari, H ; Baghalha, M ; Sharif University of Technology
    Abstract
    In this paper, a two-dimensional, two-phase, non-isothermal model is presented to predict the electrochemical, mass transfer and heat transfer behaviors in a direct methanol fuel cell (DMFC). Governing equations including the momentum, continuity, heat transfer, proton and electron transport, species transport for water, methanol, and all the gas species (carbon dioxide, methanol vapor, water vapor, oxygen, and nitrogen) and the auxiliary equations are coupled to studying the various phenomena in DMFC. The modeling results agree well with the four different experimental data in an extensive range of operation conditions. A parametric study is also performed to examine the effects of the cell... 

    Statistical analysis of read static noise margin for near/sub-threshold SRAM cell

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Vol. 61, Issue. 12 , November , 2014 , pp. 3386-3393 ; ISSN: 15498328 Saeidi, R ; Sharifkhani, M ; Hajsadeghi, K ; Sharif University of Technology
    Abstract
    A fast statistical method for the analysis of the Read SNM of a 6 T SRAM cell in near/subthreshold region is proposed. The method is based on the nonlinear behavior of the cell. DIBL and body effects are thoroughly considered in the derivation of an accurate closed form solution for the Read Static Noise Margin (SNM) of the near/subthreshold SRAM cell. This method uses the state space equation to derive the Read SNM of the cell as a function of threshold voltage of cell transistors. This function shows the dependency of the Read SNM on sizing, VDD, temperature, and threshold voltage variations. It provides a fast reliability analysis for a cell array of a given size and a supply voltage. It... 

    A subthreshold symmetric SRAM cell with high read stability

    , Article IEEE Transactions on Circuits and Systems II: Express Briefs ; Vol. 61, issue. 1 , Jan , 2014 , p. 26-30 ; 15497747 Saeidi, R ; Sharifkhani, M ; Hajsadeghi, K ; Sharif University of Technology
    Abstract
    This brief introduces a differential eight-transistor static random access memory (SRAM) cell for subthreshold SRAM applications. The symmetric topology offers a smaller area overhead compared with other symmetric cells for the same stability in the read operation. Two transistors isolate the cell storage nodes from the read operation path to maintain the data stability of the cell. This topology improves the data stability at the expense of read operation delay. Thorough postlayout Monte Carlo worst corner simulations in 45-nm CMOS technology are conducted. The proposed cell operates down to 0.35 V with a read noise margin of 74 mV and a write noise margin of 92 mV. Under this condition,... 

    Low-leakage soft error tolerant port-less configuration memory cells for FPGAs

    , Article Integration, the VLSI Journal ; Volume 46, Issue 4 , September , 2013 , Pages 413-426 ; 01679260 (ISSN) Azizi Mazreah, A ; Manzuri Shalmani, M. T ; Sharif University of Technology
    2013
    Abstract
    As technology scales the area constraint is becoming less restrictive, but soft error rate and leakage current are drastically increased with technology down scaling. Therefore, in nano-scaled CMOS technology, the reduction of soft error rate and leakage current is the most important challenge in designing field programmable gate arrays (FPGA). To overcome these difficulties, based on the observations that most configuration bit-streams of FPGA are zeros across different designs and that configuration memory cells are not directly involved with signal propagation delays in FPGA, this paper presents a new family of configuration memory cells for FPGAs in nano-scaled CMOS technology. When... 

    Genotoxicity of graphene nanoribbons in human mesenchymal stem cells

    , Article Carbon ; Volume 54 , 2013 , Pages 419-431 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Emamy, H ; Akhavan, F ; Sharif University of Technology
    2013
    Abstract
    Single-layer reduced graphene oxide nanoribbons (rGONRs) were obtained through an oxidative unzipping of multi-walled carbon nanotubes and a subsequent deoxygenation by hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs) were isolated from umbilical cord blood and used for checking the concentration- and time-dependent cyto- and geno-toxic effects of the rGONRs and reduced graphene oxide sheets (rGOSs). The cell viability assay indicated significant cytotoxic effects of 10 μg/mL rGONRs after 1 h exposure time, while the rGOSs exhibited the same cytotoxicity at concentration of 100 μg/mL after 96 h. The oxidative stress was found as the main mechanism involved in the... 

    Spike phase synchronization in delayed-coupled neural networks: Uniform vs. non-uniform transmission delay

    , Article Chaos ; Volume 23, Issue 1 , 2013 ; 10541500 (ISSN) Jalili, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, we investigated phase synchronization in delayed dynamical networks. Non-identical spiking Hindmarsh-Rose neurons were considered as individual dynamical systems and coupled through a number of network structures such as scale-free, Erdos-Rényi, and modular. The individual neurons were coupled through excitatory chemical synapses with uniform or distributed time delays. The profile of spike phase synchrony was different when the delay was uniform across the edges as compared to the case when it was distributed, i.e., different delays for the edges. When an identical transmission delay was considered, a quasi-periodic pattern was observed in the spike phase synchrony. There... 

    Power allocation in coordinated multi-cell networks using Stackelberg game

    , Article 2012 6th International Symposium on Telecommunications, IST 2012 ; 2012 , Pages 289-294 ; 9781467320733 (ISBN) Haddadi, S ; Behroozi, H ; Khalaj, B. H ; Sharif University of Technology
    2012
    Abstract
    In this paper, we study the power allocation problem in multi-cell orthogonal frequency division multiple access (OFDMA) networks. In order to improve system performance in cell-edges, users are separated into two groups with respect to their distance from base-stations (BSs): Central users and cell-edge users. Coordinated multi-point joint transmission (CoMP-JT) technology incorporated with static clustering is used for users near the cell-edges. In addition, our goal is to serve users with different target signal to interference plus noise ratio (SINR) according to their requested quality of services. Consequently, revenue of the service provider is considered as another factor and two... 

    Closed-cell Al alloy composite foams: Production and characterization

    , Article Materials and Design ; Volume 42 , December , 2012 , Pages 8-12 ; 02641275 (ISSN) Malekjafarian, M ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    Foamy Al alloy SiCp composites of different densities ranging from 0.4 to 0.7g/cm3 were manufactured by melt-foaming process, which consisted of direct CaCO3 addition into the molten A356 aluminum bath. Mechanical properties and morphological observations indicated that the three-stage deformation mechanism of typical cellular foams is dominant in the produced A356 aluminum foams. Middle-stage stress plateau shrinkage plus compressive strength and bending stress enhancements were observed in denser foams. With the same Al/SiCp ratio, energy absorption ability and plastic collapse strength of the closed-cell foams were increased with the foam density. Doubling cell-face bending effects... 

    Low-leakage soft error tolerant dual-port SRAM cells for cache memory applications

    , Article Microelectronics Journal ; Volume 43, Issue 11 , November , 2012 , Pages 766-792 ; 00262692 (ISSN) Mazreah, A. A ; Manzuri Shalmani, M. T ; Sharif University of Technology
    2012
    Abstract
    As transistor dimensions are reduced due to technological advances, the area constraint is becoming less restrictive, but soft error rate, leakage current, and process variation are drastically increased. Therefore, in nano-scaled CMOS technology, soft error rate, leakage current and process variation are the most important issues in designing embedded cache memory. To overcome these challenges, and based on the observation that cache-resident memory values of ordinary programs exhibit a strong bias towards zero, this paper deals with new low leakage, hardened, and read-static-noise-margin-free SRAM memory cells for nano-scaled CMOS technology. These cells are completely hardened and cannot... 

    Liquid color recognition by using an optical reflection system

    , Article Journal of Applied Sciences ; Volume 12, Issue 18 , 2012 , Pages 1917-1924 ; 18125654 (ISSN) Siadat, M ; Golnabi, H ; Sharif University of Technology
    ANSInet  2012
    Abstract
    Operation of an optomechanical system for color reflection study is reported. The reported system consists of a double-fiber optical design and an electro-mechanical scanning system. In the double-fiber arrangement one fiber transmits the source light to the target surface and the second one sends the reflected light off the sample target to a photodetector. By scanning the double-fiber probe in one-direction reflection properties of different color liquid samples are investigated in this study. A cubic cell made of glass material is used as the liquid container and reflection signals are compared for different filled color liquids. The maximum reflection signals are: for the yellow color... 

    Deformation prediction of mouse embryos in cell injection experiment by a feedforward artificial neural network

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 2, Issue PARTS A AND B , August , 2011 , Pages 543-550 ; 9780791854792 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Vossoughi, G. R ; Sharif University of Technology
    2011
    Abstract
    In this study, neural network models have been used to predict the mechanical behaviors of mouse embryos. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. In order to reach these purposes two neural network models have been implemented. Experimental data earlier deduced-by [Flückiger, M. (2004). Cell Membrane Mechanical Modeling for Microrobotic Cell Manipulation. Diploma Thesis, ETHZ Swiss Federal Institute of Technology, Zurich, WS03/04]-were collected to obtain training and test data for the neural network. The results of these investigations show that the correlation... 

    Application of a new spherical super element in predicting the deformation of biological cells in microinjection

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 7 , August , 2011 , Pages 41-49 ; 9780791854846 (ISBN) Sarvi, M. N ; Ahmadian, M. T ; Sharif University of Technology
    2011
    Abstract
    Biological cell injection is a sensitive and important work which is implemented in injection of foreign materials into individual cells. Microinjection is significantly developed in the field of drug discovery and genetics so predicting the behavior of cell in microinjection is remarkably important because a tiny excessive manipulation force can destroy the tissue of the biological cell. There are a few analytical methods available to simulate the cell injection, hence the numerical methods such as FEM are suitable to be used to model the microinjection. In this study, a new spherical super element is presented to model the biological cells and deformation of a specific cell under an... 

    Comparison of deformation analysis of a biological cell under an injection force using analytical, experimental and finite element methods and Artificial Neural Network

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 ; Volume 2 , 2011 , Pages 499-507 ; 9780791854884 (ISBN) Sarvi, M. N ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    Abstract
    Biological cell injection is a sensitive and important work which is implemented in injection of foreign materials into individual cells. Microinjection is significantly developed in the field of drug discovery and genetics so predicting the behavior of cell in microinjection is remarkably important because a tiny excessive manipulation force can destroy the tissue of the biological cell. There are a few analytical methods available to simulate the cell injection, hence the numerical methods such as FEM are suitable to be used to model the microinjection. In this study, a new spherical super element is presented to model the biological cells and deformation of a specific cell under an... 

    Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes

    , Article Journal of Materials Chemistry ; Volume 21, Issue 2 , Oct , 2011 , Pages 387-393 ; 09599428 (ISSN) Akhavan, O ; Abdolahad, M ; Abdi, Y ; Mohajerzadeh, S ; Sharif University of Technology
    2011
    Abstract
    Vertically aligned multi-wall carbon nanotube (CNT) arrays were fabricated in tip-growth mode on Ni/Si substrates using plasma enhanced chemical vapor deposition. In a purification process including hydrogenation and acid washing of the Ni/CNTs, the oxygen-containing functional groups were substantially reduced and a wide hollow core at the tip of the CNTs was formed by removing the Ni seeds. Sol-gel silver nanoparticles were deposited on the surface of the unpurified Ni/CNTs, while they could also be embedded within the hollow core of the Ni-removed CNTs. The persistency of the silver ions in the Ni-removed Ag-CNTs in comparison to the release of the silver ions from the Ag-Ni/CNTs in a... 

    Fabrication of a highly ordered hierarchically designed porous nanocomposite via indirect 3D printing: Mechanical properties and in vitro cell responses

    , Article Materials and Design ; Volume 88 , 2015 , Pages 924-931 ; 02641275 (ISSN) Tamjid, E ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Design and development of biodegradable scaffolds with highly uniform and controlled internal structure that stimulate tissue regeneration are the focus of many studies. The aim of this work is to apply a modified three-dimensional (3D) printing process to fabricate polymer-matrix composites with controlled internal architecture. Computationally-designed plaster molds with various pore sizes in the range of 300-800. μm were prepared by employing 3D printing of a water-based binder. The molds were converted to ε-polycaprolactone (PCL) and PCL/bioactive glass (BG) composite scaffolds by solvent casting and freeze drying methods. Optical and electron microscopy studies revealed that the pore... 

    A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    , Article Journal of Micromechanics and Microengineering ; Volume 26, Issue 1 , November , 2015 ; 09601317 (ISSN) Shamloo, A ; Amirifar, L ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be... 

    Design of robust SRAM cells against single-event multiple effects for nanometer technologies

    , Article IEEE Transactions on Device and Materials Reliability ; Volume 15, Issue 3 , 2015 , Pages 429-436 ; 15304388 (ISSN) Rajaei, R ; Asgari, B ; Tabandeh, M ; Fazeli, M ; Sharif University of Technology
    Abstract
    As technology size scales down toward lower two-digit nanometer dimensions, sensitivity of CMOS circuits to radiation effects increases. Static random access memory cells (SRAMs) that are mostly employed as high-performance and high-density memory cells are prone to radiation-induced single-event upsets. Therefore, designing reliable SRAM cells has always been a serious challenge. In this paper, we propose two novel SRAM cells, namely, RHD11 and RHD13, that provide more attractive features than their latest proposed counterparts. Simulation results show that our proposed SRAM cells as compared with some state-of-the-art designs have considerably higher robustness against single-event... 

    Effect of formulation factors on the bioactivity of glucose oxidase encapsulated chitosan-alginate microspheres: In vitro investigation and mathematical model prediction

    , Article Chemical Engineering Science ; Volume 125 , March , 2015 , Pages 4-12 ; 00092509 (ISSN) Abdekhodaie, M. J ; Cheng, J ; Wu, X. Y ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Higher reactive oxygen species (ROS) levels in cancer cells than normal cells have long been recognized, which makes cancer cells more susceptible to excess ROS. Thus oxidation (also called pro-oxidant) therapy has been explored as new cancer therapy regimens. To produce additional ROS, e.g. H2O2 in situ within tumor, we encapsulated glucose oxidase in chitosan-coated alginate-calcium microspheres (GOX-MS) for locoregional treatment and demonstrated its efficacy against cancer cells in vitro and in vivo. Owing to the complex biological functions of ROS, the production rate and amount of H2O2 are critical to achieve therapeutic benefits without causing normal tissue toxicity. This work was... 

    Fsi simulation of a healthy coronary bifurcation for studying the mechanical stimuli of endothelial cells under different physiological conditions

    , Article Journal of Mechanics in Medicine and Biology ; Volume 15, Issue 5 , October , 2015 ; 02195194 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2015
    Abstract
    Atherosclerosis is a world-spread and well-known disease. This disease strongly relates to the endothelial cells (ECs) function. Normally, the endothelial cells align in the flow direction in the atheroprotected sites; however, in the case of atheroprone sites these cells orient randomly. The mechanical stimuli such as wall shear stress and strains could determine the morphology and function of the endothelial cells. In the present study, we numerically simulated the left main coronary artery (LCA) and its branches to left anterior descending (LAD) and left circumflex coronary (LCX) artery using fluid-structure interaction (FSI) modeling. The results were presented as longitudinal and...