Loading...
Search for: density-functional-theory
0.008 seconds
Total 292 records

    A theoretical approach to evaluate the rate capability of Li-ion battery cathode materials

    , Article Journal of Materials Chemistry A ; Vol. 2, issue. 1 , 2014 , pp. 107-115 ; ISSN: 20507488 Kalantarian, M. M ; Asgari, S ; Mustarelli, P ; Sharif University of Technology
    Abstract
    Charge-discharge rate capability is one of the most important properties of cathode materials for lithium batteries, in particular when envisaging high power density applications such as automotive applications. Efforts to modify rate have been carried out by carbon coating and decreasing particle size in order to modify electronic and ionic conductivity. However, this approach cannot justify all experimental data reported in the literature. Here, we investigated the rate capability of cathode materials by considering their density of states (DOS) calculated by several density functional theory (DFT) methods, in both the lithiated and the delithiated case. We suggested that these structures... 

    Magnetization of bilayer graphene with interplay between monovacancy in each layer

    , Article Journal of Applied Physics ; Volume 114, Issue 8 , 2013 ; 00218979 (ISSN) Rostami, M ; Faez, R ; Rabiee Golgir, H ; Sharif University of Technology
    2013
    Abstract
    Effects of introducing two monovacancies in bilayer graphene are investigated by using spin-polarized density functional theory. Each layer of bilayer graphene has a monovacancy. Two different classifications are studied, namely, AA and AB. In AA category, vacancies in upper layer and lower layer are chosen from the same sublattices (A or B). However, in AB category, vacancies are selected from the different sublattices (A and B). Two different structures of every classification are examined in order to investigate the effects of two monovacancies on structural, electronic, and magnetic properties of bilayer graphene. Structural optimization reveals that introducing a monovacancy in every... 

    A novel phenolic ionic liquid for 1.5 molar CO2 capture: Combined experimental and DFT studies

    , Article RSC Advances ; Volume 5, Issue 71 , Jun , 2015 , Pages 58005-58009 ; 20462069 (ISSN) Vafaeezadeh, M ; Aboudi, J ; Mahmoodi Hashemi, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    A phenolic-based ionic liquid (IL), 1-(2-hydroxyethyl)-2,3-dimethylimidazolium phenoxide has been introduced for 1.5 molar carbon dioxide (CO2) absorption at ambient conditions without using special methodologies or precautions. The structure of the IL was characterized by various methods such as FT-IR, 1H NMR, 13C NMR, elemental analysis (EA) and thermogravimetric analysis (TGA). The ability of this IL for CO2 uptake reaches to its maximum value after 2 h. The IL has been reused fr several times with constant efficiency. Density functional theory (DFT) calculations at the B3LYP/6-311++G∗∗ level of calculation have been carried out to gain more structural knowledge... 

    A DFT study of carbon monoxide adsorption on a Si4 nano-cluster

    , Article Molecular Physics ; Volume 107, Issue 17 , 2009 , Pages 1805-1810 ; 00268976 (ISSN) Nahali, M ; Gobal, F ; Sharif University of Technology
    2009
    Abstract
    Using the gradient-corrected hybrid density functional method of Predew, Burke, and Ernzerhof (PBEPBE) and the new hybrid meta-density functional method of Truhlar (MPW1B95), the geometry, adsorption energy, vibrational frequency, and charge distribution of carbon monoxide adsorption on a Si4 nano-cluster has been studied. Taking into account spin multicipility in the calculations, a new stable structure of CO absorbed on the Si4 cluster has been found, in addition to the previously reported structures. Exhaustive vibrational frequency analysis of optimized structures shows that some of the formerly reported structures have imaginary vibrational frequencies and are not proper stable... 

    Structures of Cu n + (n = 3-10) Clusters Obtained by Infrared Action Spectroscopy

    , Article Journal of Physical Chemistry Letters ; Volume 10, Issue 9 , 2019 , Pages 2151-2155 ; 19487185 (ISSN) Lushchikova, O. V ; Huitema, D. M. M ; López Tarifa, P ; Visscher, L ; Jamshidi, Z ; Bakker, J. M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Coinage metal clusters are of great importance for a wide range of scientific fields, ranging from microscopy to catalysis. Despite their clear fundamental and technological importance, the experimental structural determination of copper clusters has attracted little attention. We fill this gap by elucidating the structure of cationic copper clusters through infrared (IR) photodissociation spectroscopy of Cu n + -Ar m complexes. Structures of Cu n + (n = 3-10) are unambiguously assigned based on the comparison of experimental IR spectra in the 70-280 cm -1 spectral range with spectra calculated using density functional theory. Whereas Cu 3 + and Cu 4 + are planar, starting from n = 5, Cu n +... 

    Intermolecular C-H⋯O and n → π∗ and short intramolecular σ → π∗ interactions in the molybdenum(0) tetracarbonyl complex of a very twisted 14-membered tetraazaannulene macrocyclic ligand: Structural and computational studies

    , Article CrystEngComm ; Volume 21, Issue 35 , 2019 , Pages 5222-5226 ; 14668033 (ISSN) Kia, R ; Hosseini, M ; Abdolrahimi, A ; Mahmoudi, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    The structural and computational studies of a new molybdenum tetracarbonyl complex of 5,14-dihydro-6,17-dimethyl-8,15-diphenyldibenzo[b,i]-[1,4,8,11]tetraazacyclotetradecine, a 14-membered tetraazaannulene macrocyclic ligand, Me2Ph2H2TAA, were carried out by X-ray crystallography and density functional and natural bond orbital (NBO) theories. The complex showed an interesting intermolecular C-H⋯O hydrogen bond which was supported by n → π∗ interaction, forming a one-dimensional extended chain along the b-axis. Interesting intramolecular C-H⋯π and very short σ → π∗ (C-H⋯CO) interactions stabilized the twisted geometry of the coordinated ligand. © 2019 The Royal Society of Chemistry 2019  

    Intermolecular C-H⋯O and n → π∗ and short intramolecular σ → π∗ interactions in the molybdenum(0) tetracarbonyl complex of a very twisted 14-membered tetraazaannulene macrocyclic ligand: Structural and computational studies

    , Article CrystEngComm ; Volume 21, Issue 35 , 2019 , Pages 5222-5226 ; 14668033 (ISSN) Kia, R ; Hosseini, M ; Abdolrahimi, A ; Mahmoudi, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    The structural and computational studies of a new molybdenum tetracarbonyl complex of 5,14-dihydro-6,17-dimethyl-8,15-diphenyldibenzo[b,i]-[1,4,8,11]tetraazacyclotetradecine, a 14-membered tetraazaannulene macrocyclic ligand, Me2Ph2H2TAA, were carried out by X-ray crystallography and density functional and natural bond orbital (NBO) theories. The complex showed an interesting intermolecular C-H⋯O hydrogen bond which was supported by n → π∗ interaction, forming a one-dimensional extended chain along the b-axis. Interesting intramolecular C-H⋯π and very short σ → π∗ (C-H⋯CO) interactions stabilized the twisted geometry of the coordinated ligand. © 2019 The Royal Society of Chemistry 2019  

    Electron transport phenomenon simulation through the carborane nano-molecular wire

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 40, Issue 9 , August , 2008 , Pages 2965-2972 ; 13869477 (ISSN) Aghaie, H ; Gholami, M. R ; Monajjemi, M ; Ganji, M. D ; Sharif University of Technology
    2008
    Abstract
    The electron transport characteristics of a 1,10-dimethylene-1,10-dicarba-closo-decaborane (10-vertex carborane) single molecular conductor is investigated via the density functional-based non-equilibrium Green's function (DFT-NEGF) method. We consider three configurations for the molecular wire sandwiched between two Au(1 0 0) electrodes: the hollow site, top site and bridge site positions. Our results show that the energetically favorable hollow site configuration has a higher current intensity than the other configurations. The projection of the density of states (PDOS) and the transmission coefficients T(E) of the two-probe system at zero bias are analyzed, and it suggests that the... 

    Theoretical investigation of the hydrogen abstraction reaction of the OH radical with CH2FCH2F (HFC-152): A dual-level direct dynamics study

    , Article Journal of Physical Chemistry A ; Volume 111, Issue 33 , 2007 , Pages 8095-8103 ; 10895639 (ISSN) Taghikhani, M ; Parsafar, G. A ; Sharif University of Technology
    2007
    Abstract
    The hydrogen abstraction reaction of the OH radical with CH 2FCH22F (HFC-152) is studied theoretically over the 150-3000 K temperature range. In this study, the two most recently developed hybrid density functional theories, namely, BBlK and MPWBlK, are applied, and their efficiency in reaction dynamics calculation is discussed. The BBlK/6-31+G(d,p) method gives the best result for the potential energy surface (PES) calculations, including barrier heights, reaction path information (the first and second derivatives of PES), geometry of transition state structures, and even weak hydrogen bond orientations. The rate constants were obtained by the dual-level direct dynamics with the... 

    Quantum electrochemical approaches to corrosion inhibition properties of some aniline derivatives in acidic media

    , Article Journal of the Electrochemical Society ; Volume 154, Issue 8 , 2007 , Pages P93-P100 ; 00134651 (ISSN) Lashgari, M ; Arshadi, M. R ; Sastri, V. S ; Sharif University of Technology
    2007
    Abstract
    The molecular behavior of some aniline derivatives as corrosion inhibitors of iron and copper in acidic media (HCl and H2 S O4) were investigated quantum-electrochemically by some recently developed models based on density functional theory and cluster/polarized continuum approaches. In this regard, electrical dipole moment, charges on hetero atoms and acidic hydrogen, electronic chemical potential, and extent of charge transfer were determined for both neutral and protonated forms of molecules inside an electrical double layer and correlated to their inhibitory powers. Good correlations were observed for both acidic media. The results were discussed via ion-pair hypothesis and deprotonation... 

    Lattice relaxation in many-electron states of the diamond vacancy

    , Article Physical Review B - Condensed Matter and Materials Physics ; Volume 71, Issue 3 , 2005 ; 10980121 (ISSN) Heidari Saani, M ; Vesaghi, M. A ; Esfarjani, K ; Ghods Elahi, T ; Sayari, M ; Hashemi, H ; Gorjizadeh, N ; Sharif University of Technology
    2005
    Abstract
    Symmetric lattice relaxation around a vacancy in diamond and its effect on many electron states of the defect have been investigated. A molecular approach is used to evaluate accurately electron-electron (e-e) interaction via a semiempirical formalism which is based on a generalized Hubbard Hamiltonian. Coupling of the defect molecule to surrounding bulk is also considered using an improved Stillinger-Weber potential for diamond. Strong dependence of the electronic energy levels to the relaxation size of the nearest neighbor (NN) atoms indicates that in order to obtain quantitative results the effect of lattice relaxation should be considered. Except for the high spin state of the defect 5A... 

    Theoretical investigation of the hydrogen abstraction reaction of the OH radical with CH3CHF2 (HFC152-a): A dual level direct density functional theory dynamics study

    , Article Journal of Physical Chemistry A ; Volume 109, Issue 36 , 2005 , Pages 8158-8167 ; 10895639 (ISSN) Taghikhani, M ; Parsafar, G. A ; Sabzyan, H ; Sharif University of Technology
    2005
    Abstract
    The hydrogen abstraction reaction of the OH radical with CH 3CHF2 (HFC152-a) has been studied theoretically over a wide temperature range, 200-3000 K. Two different reactive sites of the molecule, CH3 and CHF2 groups have been investigated precisely, and results confirm that CHF2 position of the molecule is a highly reactive site. In this study, three recently developed hybrid density functional theories, namely, MPWB1K, MPW1B95, and MPW1K, are used. The MPWB1K/6-31+G(d,p) method gives the best result for kinetic calculations, including barrier heights, reaction path information and geometry of transition state structures and other stationary points. To refine the barrier height of each... 

    Cyclometalated heteronuclear Pt/Ag and Pt/Tl complexes: A structural and photophysical study

    , Article Dalton Transactions ; Vol. 43, issue. 3 , 2014 , pp. 1105-1116 ; ISSN: 14779226 Jamali, S ; Ghazfar, R ; Lalinde, E ; Jamshidi, Z ; Samouei, H ; Shahsavari, H. R ; Moreno, M. T ; Escudero-Adan, E ; Benet-Buchholz, J ; Milic, D ; Sharif University of Technology
    Abstract
    To investigate the factors influencing the luminescent properties of polymetallic cycloplatinated complexes a detailed study of the photophysical and structural properties of the heteronuclear complexes [Pt2Me 2(bhq)2(μ-dppy)2Ag2(μ-acetone) ](BF4)2, 2, [PtMe(bhq)(dppy)Tl]PF6, 3, and [Pt2Me2(bhq)2(dppy)2Tl]PF 6, 4, [bhq = benzo[h]quinoline, dppy = 2-(diphenylphosphino)pyridine] was conducted. Complexes 3 and 4 synthesized by the reaction of [PtMe(bhq)(dppy)], 1, with TlPF6 (1 or 1/2 equiv.) and stabilized by unsupported Pt-Tl bonds as revealed by multinuclear NMR spectroscopy and confirmed by X-ray crystallography for 3. DFT calculations for the previously reported butterfly Pt2Ag2 cluster 2... 

    High pressure effects on electronic and magnetic properties of LaOFeAs superconductor

    , Article Journal of Superconductivity and Novel Magnetism ; Vol. 27, issue. 7 , 2014 , p. 1689-1692 Khosroabadi, H ; Sandoghchi, M ; Akhavan, M ; Sharif University of Technology
    Abstract
    The effect of pressure has been studied on structural and electronic properties of LaOFeAs high-T c superconductor by ab initio density functional theory by using pseudopotential Quantum Espresso code. The lattice parameters and ionic positions in the ambient pressure and some high pressure up to 20 GPa have been calculated. The obtained data versus the simple scaling relation for the ionic positions and distances for mechanical pressures have been discussed. The results of band structure and magnetic moment calculations of this compound versus the applied pressure are presented in this paper. The results are compared with the other experimental and computational data in the literature  

    A combined first principles and analytical determination of the modulus of cohesion, surface energy, and the additional constants in the second strain gradient elasticity

    , Article International Journal of Solids and Structures ; Volume 50, Issue 24 , 2013 , Pages 3967-3974 ; 00207683 (ISSN) Ojaghnezhad, F ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    Mindlin's (1965) second strain gradient theory due to its competency in capturing the effects of edges, corners, and surfaces is of particular interest. Formulation in this framework, in addition to the usual Lamé constants, requires the knowledge of sixteen additional materials constants. To date, there are no successful experimental techniques for measuring these material parameters which reflect the discrete nature of matter. The present work gives an accurate remedy for the atomistic calculations of these parameters by utilizing the first principles density functional theory (DFT) for the calculations of the atomic force constants combined with an analytical formulation. It will be shown... 

    Synthesis, characterization, DFT studies and catalytic activities of manganese(ii) complex with 1,4-bis(2,2′:6,2′′-terpyridin- 4′-yl) benzene

    , Article Dalton Transactions ; Volume 41, Issue 39 , Jul , 2012 , Pages 12282-12288 ; 14779226 (ISSN) Najafpour, M. M ; Hillier, W ; Shamkhali, A. N ; Amini, M ; Beckmann, K ; Jagličić, Z ; Jagodič, M ; Strauch, P ; Moghaddam, A. N ; Beretta, G ; Bagherzadeh, M ; Sharif University of Technology
    2012
    Abstract
    A new di-manganese complex with "back-to-back" 1,4-bis(2,2′:6,2′′-terpyridin-4′-yl) benzene ligation has been synthesized and characterised by a variety of techniques. The back-to-back ligation presents a novel new mononuclear manganese catalytic centre that functions as a heterogeneous catalysis for the evolution of oxygen in the presence of an exogenous oxidant. We discuss the synthesis and spectroscopic characterizations of this complex and propose a mechanism for oxygen evolution activity of the compound in the presence of oxone. The di-manganese complex also shows efficient and selective catalytic oxidation of sulfides in the presence of H2O2. Density functional theory calculations were... 

    Tunable bandgap opening in the proposed structure of silicon-doped graphene

    , Article Micro and Nano Letters ; Volume 6, Issue 8 , 2011 , Pages 582-585 ; 17500443 (ISSN) Azadeh, M. S. S ; Kokabi, A ; Hosseini, M ; Fardmanesh, M ; Sharif University of Technology
    2011
    Abstract
    A specific structure of doped graphene with substituted silicon impurity is introduced and ab initio density-functional approach is applied for the energy band structure calculation of the proposed structure. Using the band structure calculation for different silicon sites in the host graphene, the effect of silicon concentration and unit cell geometry on the bandgap of the proposed structure is also investigated. Chemically, silicon-doped graphene results in an energy gap as large as 2eV according to density-functional theory calculations. As the authors will show, in contrast to previous bandgap engineering methods, such structure has significant advantages including wide gap tuning... 

    Synthesis and structure of the cyclometalated hetero-binuclear Pt-Au complexes with bridging 2-diphenylphosphinopyridine ligand

    , Article Journal of Organometallic Chemistry ; Volume 786 , 2015 , Pages 14-20 ; 0022328X (ISSN) Karimi, M. J ; Jamali, S ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The heterobinuclear cyclometalated PtII-AuI complexes of the type [MePt(bhq)(μ-dppy)AuL]PF6, in which, bhq = benzo{h}quinoline, dppy = 2-diphenylphosphinopyridine, L = PPh3, 5; PPh2Me, 6; PPhMe2, 7; have been prepared by reaction of the mononuclear platinum(II) complex [MePt(bhq)(dppy)], 1, with 1 equiv. [AuL]+. Also, the reaction of complex 1 with 1 equiv AuCl(SMe2) at -60 °C gave the neutral heterobinuclear complex [MePt(bhq)(μ-dppy)AuCl], 8. All of the complexes were characterized using NMR spectroscopy and elemental microanalysis and complexes 5 and 8 were further identified by single crystal X-ray structure determination. Time-dependent density functional theory (TD-DFT) is used to... 

    First-principle electronic structure calculation of BaFe2-x Cox As2 (X = 0,1, 2) superconductor

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 28, Issue 8 , August , 2015 , Pages 2249-2254 ; 15571939 (ISSN) Shafiei, M ; Khosroabadi, H ; Akhavan, M ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    The equilibrium crystal structure and electronic structure of BaFe2-x Cox As2 (x = 0,1, 2) superconductor have been investigated by using the pseudopotential Quantum Espresso code based on the ab initio density functional theory in the generalized gradient approximation. The equilibrium crystal structure for x = 1.0 has been determined by considering five different Fe/Co configurations. This study shows that the spin calculation is essential to obtain the experimental values at x = 0.0. The total and partial density of states, band structure, and Fermi surfaces of the three compounds has been calculated. Density of states calculation indicates the important... 

    Optimal control of dissociation of nitrogen molecule with intense ultra-short laser pulse shaping

    , Article Journal of Molecular Structure ; Volume 1083 , March , 2015 , Pages 121-126 ; 00222860 (ISSN) Rasti, S ; Irani, E ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    (GraphPresented) The quantum optimal control theory in conjunction with time dependent density functional theory is used to optimize the laser pulse shape for dissociation of nitrogen molecule. For several initial peak intensities and frequency ranges, the optimum shapes are produced and compared to determine the most efficient pulse. Ehrenfest molecular dynamics model is also used to test the dissociation process. The corresponding snapshots of density and time dependent electron localization function are presented. It is noticed that when the frequency ranges of laser pulses are doubled, it leads to 60% faster dissociation of N2 molecule