Loading...
Search for: density-of-states
0.008 seconds
Total 29 records

    First principles study of the I-V characteristics of the alkane-thiols nano-molecular wires

    , Article Current Applied Physics ; Volume 9, Issue 2 , 2009 , Pages 367-373 ; 15671739 (ISSN) Aghaie, H ; Gholami, M. R ; Darvish Ganji, M ; Taghavi, M. M ; Sharif University of Technology
    2009
    Abstract
    We report a density functional non-equilibrium Green's function study of electrical transport in a single molecular conductor consisting of an ethane-dithiolate (C2H4S2) molecular wire with two sulfur end groups bonded to the Au(1 1 1) electrodes. We show that the current was increased by increasing the external voltage biases. The projected density of states (PDOS) and transmission coefficients T(E) under various external voltage biases are analyzed, and it suggests that the variation of the coupling between the molecule and the electrodes with external bias leads to the increase of the current. Furthermore, the investigation of the transport properties of the pentane-dithiolate (C5H10S2)... 

    Electron transport phenomenon simulation through the carborane nano-molecular wire

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 40, Issue 9 , August , 2008 , Pages 2965-2972 ; 13869477 (ISSN) Aghaie, H ; Gholami, M. R ; Monajjemi, M ; Ganji, M. D ; Sharif University of Technology
    2008
    Abstract
    The electron transport characteristics of a 1,10-dimethylene-1,10-dicarba-closo-decaborane (10-vertex carborane) single molecular conductor is investigated via the density functional-based non-equilibrium Green's function (DFT-NEGF) method. We consider three configurations for the molecular wire sandwiched between two Au(1 0 0) electrodes: the hollow site, top site and bridge site positions. Our results show that the energetically favorable hollow site configuration has a higher current intensity than the other configurations. The projection of the density of states (PDOS) and the transmission coefficients T(E) of the two-probe system at zero bias are analyzed, and it suggests that the... 

    Fourier transform infrared spectroscopy and scanning tunneling spectroscopy of porous silicon in the presence of methanol

    , Article Sensors and Actuators, B: Chemical ; Volume 132, Issue 1 , 2008 , Pages 40-44 ; 09254005 (ISSN) Razi, F ; Rahimi, F ; Iraji zad, A ; Sharif University of Technology
    2008
    Abstract
    Porous silicon samples were obtained from p+- and n-type silicon wafers. Gas sensing measurements showed that the electrical conductivity of porous Si on p+- and n-type wafers increases strongly and decreases weakly in the presence of methanol gas, respectively. Scanning tunneling spectroscopy (STS) indicates that the adsorption of methanol on the surface of n-porous silicon decreases the average density of states especially in the band gap. Fourier transform infrared (FTIR) spectroscopy reveals that after methanol exposure partial surface oxidation occurs which produces electron traps as well as methanol adsorption on the porous surfaces. These observations imply that the number of... 

    Calculation of density of states in a 2D photonic crystal with separable profile of permittivity

    , Article Photonic Crystal Materials and Devices VII, San Jose, CA, 21 January 2008 through 23 January 2008 ; Volume 6901 , 2008 ; 0277786X (ISSN); 9780819470768 (ISBN) Baradaran Ghasemi, A. H ; Khorasani, S ; Latifi, H ; Atabaki, A. H ; The International Society for Optical Engineering (SPIE) ; Sharif University of Technology
    2008
    Abstract
    When the periodic permittivity of two-dimensional (2D) photonic crystal (PC) can be separated in x- and y- coordinates, one can consider the structure as two separate 1D photonic crystals, one of them being periodic in x coordinate and the other in y coordinate. If it is possible to find a proper separable permittivity function, we can approximate a 2D PC with two distinct 1D structures. One of the advantages is rapid calculation the density of state of a 2D PC. In this article an analytical calculation of the density of states for such a 2D PC has been done with the aim of taking this advantage. For calculating the density of states we use the effective resonance approach to analyze the 1D... 

    Theoretical study of the electron transport through the cysteine amino acid nanomolecular wire

    , Article International Journal of Nanoscience ; Volume 7, Issue 2-3 , 2008 , Pages 95-102 ; 0219581X (ISSN) Ganji, M. D ; Aghaie, H ; Gholami, M. R ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2008
    Abstract
    In this paper, we study the electrical transport and Negative Differential Resistance (NDR) in a single molecular conductor consisting of a cysteine sandwiched between two Au(111) electrodes via the Density Functional Theory-based Nonequilibrium Green's Function (DFT-NEGF) method. We show that (surprisingly, despite their apparent simplicity, these Au/cysteine/Au nanowires are shown to be a convenient NDR device) the smallest two-terminal molecular wire can exhibit NDR behavior to date. Experiments with a conventional or novel self-assembled monolayer (SAM) are proposed to test these predictions. The projected density of states (PDOSs) and transmission coefficients T(E) under various... 

    Scanning tunneling spectroscopy of porous silicon in presence of methanol

    , Article Sensors and Actuators, B: Chemical ; Volume 120, Issue 1 , 2006 , Pages 172-176 ; 09254005 (ISSN) Rahimi, F ; Iraji zad, A ; Vaseghinia, S ; Sharif University of Technology
    2006
    Abstract
    In this research, we used the scanning tunneling spectroscopy (STS) technique to probe the local electrical properties of the surface of meso-porous silicon and its substrate, including local density of states (DOS) in air and in methanol environment to increase our knowledge of sensing phenomena. Meso-porous silicon was prepared on p+-type Si which has high sensitivity toward methanol. Observations revealed that while the surface electrical properties of p+-type Si have not sensible change toward methanol, average local density of state of the porous layer increases after the exposure to methanol especially in the E < EF region. Moreover, large number of surface states is produced in band... 

    Fast nuclear spin relaxation rates in tilted cone Weyl semimetals: Redshift factors from Korringa relation

    , Article Journal of Physics Condensed Matter ; Volume 33, Issue 21 , 2021 ; 09538984 (ISSN) Mohajerani, A ; Faraei, Z ; Jafari, S. A ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Spin lattice relaxation rate is investigated for 3D tilted cone Weyl semimetals (TCWSMs). The nuclear spin relaxation rate is presented as a function of temperature and tilt parameter. We find that the relaxation rate behaves as (1-ζ2)-α with α ≈ 9 where 0 ζ < 1 is the tilt parameter. We demonstrate that such a strong enhancement for ζ ≲ 1 that gives rise to very fast relaxation rates, is contributed by a new hyperfine interactions arising from the tilt itself. This can be attributed to the combination of anisotropy of the Fermi surface and an additional part related to the structure of the spacetime: extracting an effective density of states (DOS) ρ from the Korringa relation, we show that... 

    Coherent conductance in an alternating dot: Exact results

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 27, Issue 1-2 , 2005 , Pages 227-234 ; 13869477 (ISSN) Mardaani, M ; Esfarjani, K ; Sharif University of Technology
    2005
    Abstract
    In this paper we have calculated the conductance of a periodic quantum dot attached to metallic leads, within the tight-binding (TB) model and in the ballistic regime. We have calculated the Green's function (GF), density of states (DOS) and the coherent transmission coefficient (TC) fully analytically for an alternating quantum dot (A-QD). The quasi-gap, bound states energies, the energy and dot-size dependence of the GF and conductance for the system are also derived. Finally, we show analytically the conductance can be switched between insulating (OFF) and conducting (ON) states by applying a gate voltage. © 2004 Elsevier B.V. All rights reserved  

    Lateral BN-BCN heterostructure tunneling transistor with large current modulation

    , Article ACS Applied Electronic Materials ; Volume 4, Issue 7 , 2022 , Pages 3520-3524 ; 26376113 (ISSN) Horri, A ; Faez, R ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    This paper, for the first time, presents a lateral tunneling transistor based on a two-dimensional boron nitride (BN) and hexagonal boron-carbon-nitrogen (hBCN) heterostructure. The device operation is analyzed based on a non-equilibrium Greens Function (NEGF) method and an atomistic tight-binding (TB) model. The TB hopping parameters are achieved by fitting the bandstructure to density functional theory (DFT) results. This model has been used to calculate the electrical characteristics of the device, such as ION/IOFFratio, subthreshold swing, and intrinsic gate-delay time. The results indicate a switching ratio of over eight orders of magnitude, much higher than the previous two-dimensional...