Loading...
Search for: deposits
0.017 seconds
Total 694 records

    Asphaltene deposition during CO 2 injection and pressure depletion: A visual study

    , Article Energy and Fuels ; Volume 26, Issue 2 , December , 2012 , Pages 1412-1419 ; 08870624 (ISSN) Zanganeh, P ; Ayatollahi, S ; Alamdari, A ; Zolghadr, A ; Dashti, H ; Kord, S ; Sharif University of Technology
    Abstract
    Carbon dioxide miscible flooding has become a popular method for Enhanced Oil Recovery (EOR) because it not only efficiently enhances oil recovery but also considerably reduces green house gas emissions. However, it can significantly cause asphaltene deposition, which leads to serious production problems such as wettability alteration, plugging of the reservoir formation, blocking the transportation pipelines, etc. It is crucial to investigate the effects of different factors on asphaltene deposition. A novel experimental setup was prepared to employ a high-pressure visual cell for investigation of asphaltene deposition on a model rock under typical reservoir conditions. The evolution of... 

    Physical properties of sputtered amorphous carbon coating

    , Article Journal of Alloys and Compounds ; Volume 513 , 2012 , Pages 135-138 ; 09258388 (ISSN) Yari, M ; Larijani, M. M ; Afshar, A ; Eshghabadi, M ; Shokouhy, A ; Sharif University of Technology
    Abstract
    In this study the effect of deposition temperature and thickness on the physical properties of carbon films deposited by magnetron sputtering PVD was investigated. The results of Raman spectra and grazing incidence XRD (GIXRD) patterns show that the graphitization increases by increasing the deposition temperature. There is a change in deposition mechanism at 400 °C from amorphous carbon deposition to nano-structured graphite deposition. Also by increasing substrate temperature the electrical resistance of carbon films reduces significantly up to 300 °C and then remains largely constant. High intrinsic compressive stress in low temperature deposited carbon films causes cracks and... 

    Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate

    , Article Biosensors and Bioelectronics ; Volume 31, Issue 1 , 2012 , Pages 110-115 ; 09565663 (ISSN) Gholizadeh, A ; Shahrokhian, S ; Iraji zad, A ; Mohajerzadeh, S ; Vosoughi, M ; Darbari, S ; Sanaee, Z ; Sharif University of Technology
    Abstract
    A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed... 

    Study of the effect of frequency in pulse electrodeposition on Au-Ni from cyanide-citrate electrolyte by the aim of design of experiment

    , Article Advanced Materials Research, 15 December 2011 through 18 December 2011 ; Volume 410 , December , 2012 , Pages 377-381 ; 10226680 (ISSN) ; 9783037853160 (ISBN) Moakhar, R. S ; Imanieh, I ; Ghorbani, M ; Dolati, A ; Sharif University of Technology
    Abstract
    The aim of this paper is to study the influence of frequency in pulse electrodeposition, on the current efficiency, Ni content and surface morphology of deposits from a novel cyanide-citrate electrolyte with 20 mM gold as KAu(CN) 2 and 7 mM NiSO 4, with the aim of design of experiment by respond surface method (RSM). Frequency was in the range of 1-200 Hz in constant average current density, temperature, and duty cycle of 7 mA/cm 2, 59 °C and 55% respectively. Composition of the deposits was determined by atomic absorption spectroscopy (AAS). Additionally, deposits were characterized by scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDS). It was shown that from... 

    H 2 adsorption mechanism in Mg modified multi-walled carbon nanotubes for hydrogen storage

    , Article International Journal of Hydrogen Energy ; Volume 37, Issue 2 , January , 2012 , Pages 1919-1926 ; 03603199 (ISSN) Reyhani, A ; Mortazavi, S. Z ; Mirershadi, S ; Golikand, A. N ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    Multi-walled carbon nanotubes (MWCNTs) with diameter of about 50 nm were synthesized using thermal chemical vapor deposition. We have investigated the influence of Mg doping to the MWCNTs on its hydrogen storage property. TEM micrographs showed that Mg was attached to the MWCNTs and discontinuous arrangement of the carbon walls was recognized in the MWCNTs. According to XPS and BET analyses, the surface functional groups and pore size of the Mg-MWCNTs are increased by interactions between the Mg and the MWCNT's outer walls. The electrochemical discharging curves of the MWCNTs and Mg-doped MWCNTs revealed that the hydrogen storage capacity was 363 and 450 mAhg -1, respectively. Volumetric... 

    Silver selenide as a potential electro-catalyst for l-ascorbic acid electro-oxidation in alkaline solution

    , Article Electrocatalysis ; Volume 2, Issue 4 , December , 2011 , Pages 331-336 ; 18682529 (ISSN) Gobal, F ; Majari Kasmaee, L ; Sharif University of Technology
    Abstract
    Cathodically deposited Ag 2Se, to form a 1-μm-thick film, characterized by energy dispersive X-ray analysis and scanning electron microscopy, showed high electro-catalytic activity for l-ascorbic acid oxidation in alkaline solution. The onset of the process was about 80 mV cathodic of that previously observed on Ag under the same conditions and far superior over glassy carbon and Pt. The values of the exchange current density, standard heterogeneous rate constant, and transfer coefficient of the reaction were 1. 65 × 10 -4 A cm -2, 4. 35 × 10 -7 cm s -1, and 0. 60, respectively. Diffusion coefficient of l-ascorbate di-anion was also measured and was around 7. 00 × 10 -6 cm 2 s -1  

    Fabrication of HAp-8YSZ composite layer on Ti/TiO2 nanoporous substrate by EPD/MAO method

    , Article Materials Letters ; Volume 65, Issue 23-24 , 2011 , Pages 3421-3423 ; 0167577X (ISSN) Hekmatfar, M ; Moshayedi, Sh ; Ghaffari, S. A ; Rezaei, H. R ; Golestani Fard, F ; Sharif University of Technology
    Abstract
    Zirconia/Hydroxyapatite composites containing 20-50 wt.% 8YSZ were prepared on Ti/TiO2 substrates by electrophoretic deposition (EPD)/micro-arc oxidation (MAO) process. Titania, as an inner layer, was grown on the Ti plates using MAO treatment in order to form a strong join between substrate and HAp. These composites were produced by EPD in ethanol containing ZrO2/HAp particles at 50, 100 and 150 V in 1 min. Asprepared samples were sintered at 900, 1100 and 1300 °C. HAp, β-TCP, CaZrO3 phases were identified using X-ray diffractometry analysis (XRD). Scanning electron microscopy (SEM) utilized to study the surface morphology indicated a crack free microstructure at 1300 °C  

    Characterization of a transition-edge bolometer made of YBCO thin films prepared by nonfluorine metal-organic deposition

    , Article IEEE Transactions on Applied Superconductivity ; Volume 21, Issue 6 , 2011 , Pages 3587-3591 ; 10518223 (ISSN) Hosseini, M ; Moftakharzadeh, A ; Kokabi, A ; Vesaghi, M. A ; Kinder, H ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    We present the results of a bolometric transition-edge sensor made of a high-Tc superconductor YBCO thin film prepared by fluorine-free metal-organic deposition. The structure of the films was characterized by X-ray diffraction and scanning electron microscopy, and the superconducting properties were determined by R-T measurements. The applicability of the resulting film as an infrared sensor is reported here. The optical response in the range of near infrared and the noise characteristics of the patterned bolometer are measured and analyzed. The dependence of device sensitivity on the bias current and modulation frequency is also investigated. As it is presented in this paper, the results... 

    Morphology, optical and electrical properties of Cu-Ni nanoparticles in a-C:H prepared by co-deposition of RF-sputtering and RF-PECVD

    , Article Applied Surface Science ; Volume 258, Issue 2 , 2011 , Pages 727-731 ; 01694332 (ISSN) Ghodselahi, T ; Vesaghi, M. A ; Gelali, A ; Zahrabi, H ; Solaymani, S ; Sharif University of Technology
    Abstract
    We report optical and electrical properties of Cu-Ni nanoparticles in hydrogenated amorphous carbon (Cu-Ni NPs @ a-C:H) with different surface morphology. Ni NPs with layer thicknesses of 5, 10 and 15 nm over Cu NPs @ a-C:H were prepared by co-deposition of RF-sputtering and RF-Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. A nonmetal-metal transition was observed as the thickness of Ni over layer increases. The surface morphology of the sample was described by a two dimensional (2D) Gaussian self-affine fractal, except the sample with 10 nm thickness of Ni over layer, which is in the nonmetal-metal transition region. X-ray diffraction profile... 

    Three dimensional finite element modeling of laser cladding of nickel alloy with 1.5wt.% and 3wt.% nano Ceo2 on the low carbon steel 1015

    , Article ; 2011 Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO 2011, 1 May 2011 through 6 May 2011, Baltimore, MD , 2011 ; 9781557529107 (ISBN) Fayaz, G. R ; Vaghefi, M ; Zakeri, S. S ; Seyedin, A ; Sharif University of Technology
    Abstract
    Multilayer laser cladding process for the material properties of low carbon steel 1015 for workpiece and nickel alloy with 1.5 wt.% and 3 wt.% nano CeO2 as the powder particles is modeled. Finite Element Method (FEM) solutions of transient heat transfer and mass transfer equations in laser cladding process are presented. Geometry of the deposited material as well as temperature and thermal stress fields across the process area are calculated  

    Synthesis of titanium nano-particles via chemical vapor condensation processing

    , Article Journal of Alloys and Compounds ; Volume 509, Issue 19 , 2011 , Pages 5825-5828 ; 09258388 (ISSN) Attar, A ; Halali, M ; Sobhani, M ; Ghandehari, R. T ; Sharif University of Technology
    Abstract
    In the present study, titanium nano-particles have been synthesized using chemical vapor condensation (CVC) process. Reaction of sodium and titanium tetrachloride vapors in the tube furnace resulted in the production of titanium nano-particles that were encapsulated in sodium chloride. Dried Argon gas was employed as a carrying agent. Titanium nano-particles were contained in an ethanol bath. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) were employed for analysis and characterization of nano-particles. The size of primary particles was smaller than 100 nm and secondary particles were submicron agglomerations  

    Nanoparticulate hollow TiO 2 fibers as light scatterers in dye-sensitized solar cells: Layer-by-layer self-assembly parameters and mechanism

    , Article ChemPhysChem ; Volume 12, Issue 5 , 2011 , Pages 966-973 ; 14394235 (ISSN) Rahman, M ; Tajabadi, F ; Shooshtari, L ; Taghavinia, N ; Sharif University of Technology
    Abstract
    Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO 2 fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO 2 nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO 2 dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes... 

    Template-based growth of titanium dioxide nanorods by a particulate sol-electrophoretic deposition process

    , Article Particuology ; Volume 9, Issue 2 , 2011 , Pages 161-169 ; 16742001 (ISSN) Mohammadi, M. R ; Ordikhani, F ; Fray, D. J ; Khomamizadeh, F ; Sharif University of Technology
    Abstract
    TiO2 nanorods have been successfully grown into a track-etched polycarbonate (PC) membrane by a particulate sol-electrophoretic deposition from an aqueous medium. The prepared sols had a narrow particle size distribution around 17 nm and excellent stability against aging, with zeta potentials in the range of 47-50 mV at pH 2. It was found that TiO2 nanorods were grown from dilute aqueous sol with a low, 0.1-M concentration. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed that a full conversion of titanium isopropoxide was obtained by hydrolysis, resulting in the formation of TiO2 particles. X-ray diffraction (XRD) results revealed that TiO2 nanorods dried at 100 °C were a... 

    Prediction of asphaltene precipitation during solvent/CO2 injection conditions: A comparative study on thermodynamic micellization model with a different characterization approach and solid model

    , Article Journal of Canadian Petroleum Technology ; Volume 50, Issue 3 , 2011 , Pages 65-74 ; 00219487 (ISSN) Tavakkoli, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    There are different thermodynamic models that have been applied for modelling of asphaltene precipitation caused by various reasons, such as solvent/CO2 injection and pressure depletion. In this work, two computer codes based on two different asphaltene precipitation thermodynamic models-the first being the thermodynamic micellization model with a different characterization approach and the second being the solid model-have been developed and used for predicting asphaltene precipitation data reported in the literature as well as in the obtained data for Sarvak reservoir crude, which is one of the most potentially problematic Iranian heavy oil reserves under gas injection conditions. For the... 

    Fabrication of aluminum nitride coatings by electrophoretic deposition: Effect of particle size on deposition and drying behavior

    , Article Ceramics International ; Volume 37, Issue 1 , 2011 , Pages 313-319 ; 02728842 (ISSN) Abdoli, H ; Zarabian, M ; Alizadeh, P ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    Electrophoretic technique was used to deposit micro- and nano-sized aluminum nitride coatings on stainless steel surfaces by using a well-dispersed stable suspension produced by addition of AlN powder plus a small amount of iodine to ethanol. Parabolic regime governed the deposition. Electrophoretic deposition for 240 s at 100 V resulted in formation of a uniformly dense film on the top, but a porous inhomogeneous layer at the bottom. This was attributed to fast deposition of coarse particles and/or agglomerates at large electric fields. After drying, micro-sized particles led to a uniform crack-free interface while nano-particles resulted in fragmented non-cohesive layers. Weight loss... 

    Bio alcohol production from agricultural residues

    , Article 3rd International Symposium on Biotechniques for Air Pollution Control, Delft, 28 September 2009 through 30 September 2009 ; 2010 , Pages 167-174 ; 9780415582704 (ISBN) Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Abstract
    The bioconversion of abundant and renewable cellulosic biomass into ethanol as an alternative to petroleum is gaining importance due to the realization of diminishing natural oil and gas resources. Agricultural and foresty plant residues are an abundant and renewable source of sugar substrates that could be fermented to ethanol. A thermochemical treatment of biomass in which both cellulose and hemicellulose are hydrolyzed to soluble sugar is necessary before yeast fermentation. After thermochemical treatment, cellulase enzymes must be introduced in the system to hydrolyze any remaining cellulose. The simultaneous saccharification and fermentation (SSF), is a method which converts... 

    Structural health monitoring of buried pipelines under static dislocation and vibration

    , Article Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2010, 15 July 2010 through 17 July 2010 ; 2010 , Pages 325-329 ; 9781424471010 (ISBN) Dezfouli, S ; Zabihollah, A ; Sharif University of Technology
    Abstract
    Buried pipe lines are an efficient way of transporting of water, sewage, oil, and gas resources in all over the world. Since the buried pipe lines are exposed to many unexpected conditions, such as landslides, corrosion, fatigue, earthquakes, material flaws or even intentional damaging, so the inspection requirements lead to adoption of new method of maintenance, protection and conserving. This report aims to improve the trustworthiness, reliability, yet economical technologies for monitoring of behavior and manner of buried pipe lines during operation and assessing the risk of pipe lines failure. Distributed sensors (piezoelectric) are surface designed and embedded to investigate the... 

    CVD fabrication of carbon nanotubes on electrodeposited flower-like Fe nanostructures

    , Article Journal of Alloys and Compounds ; Volume 507, Issue 2 , 2010 , Pages 494-497 ; 09258388 (ISSN) Zanganeh, S ; Torabi, M ; Kajbafvala, A ; Zanganeh, N ; Bayati, M. R ; Molaei, R ; Zargar, H.R ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    Galvanostatic method was used to electrodeposit Fe nanostructures on platinum electrodes as catalysts. Scanning electron microscopy (SEM) revealed flower-like Fe deposits with high surface area. Carbon nanotubes were grown on flower-like Fe nanostructures by chemical vapor deposition. The structure of the synthesized carbon nanotubes was investigated by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction. According to X-ray diffraction patterns, Fe was the only detected constituent of the deposited coating. The carbon nanotubes had small wall-thickness and wide hollow core  

    Effects of membrane compliance on pore water pressure generation in gravelly sands under cyclic loading

    , Article Geotechnical Testing Journal ; Volume 33, Issue 5 , 2010 ; 01496115 (ISSN) Haeri, S. M ; Shakeri, M. R ; Sharif University of Technology
    Abstract
    The paper deals with an experimental study of the undrained cyclic behavior of a natural coarse sand and gravel deposit located in Tehran, a megacity situated on the continental side of the Alborz Mountain in Iran. Membrane compliance that plays a significant role in inhibiting redistribution of pore pressure and liquefaction in undrained cyclic triaxial tests performed on coarse granular soils is studied in this paper. Currently there is no or little satisfactory method for accounting for this phenomenon for gravelly soils, and thus the non-compliant cyclic loading resistanceof granular soils and the evaluation of the behavior of such material in natural and in situ state are not easily... 

    Classification of (2+1 ) -dimensional growing surfaces using Schramm-Loewner evolution

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 82, Issue 2 , August , 2010 ; 15393755 (ISSN) Saberi, A. A ; Dashti Naserabadi, H ; Rouhani, S ; Sharif University of Technology
    Abstract
    Statistical behavior and scaling properties of isoheight lines in three different saturated two-dimensional grown surfaces with controversial universality classes are investigated using ideas from Schramm-Loewner evolution (SLEκ). We present some evidence that the isoheight lines in the ballistic deposition (BD), Eden and restricted solid-on-solid (RSOS) models have conformally invariant properties all in the same universality class as the self-avoiding random walk (SAW), equivalently SLE8/3. This leads to the conclusion that all these discrete growth models fall into the same universality class as the Kardar-Parisi-Zhang (KPZ) equation in two dimensions