Loading...
Search for: design-method
0.01 seconds
Total 50 records

    An intelligent search technique for solving train scheduling problems: Simulated annealing and constraint satisfaction

    , Article Scientia Iranica ; Volume 14, Issue 5 , 2007 , Pages 442-449 ; 10263098 (ISSN) Isaai, M. T ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    This paper presents a hybrid scheduling technique for generating the predictive schedules of passenger trains. The algorithm, which represents a combination of simulated annealing and a constraint-based heuristic, has been designed using an object-oriented methodology and is suitable for a primarily single-track railway with some double-track sections. The search process gets started from a good initial solution created by the scheduling heuristic and continues, according to the simulated annealing search control strategy. The heuristic is also used in the neighborhood exploration process. This hybrid approach solves the problem in a short span of time. Simulation experiments, with the real... 

    Performance improvement of mixed-flow centrifugal pumps with new impeller shrouds: Numerical and experimental investigations

    , Article Renewable Energy ; Volume 163 , 2021 , Pages 635-648 ; 09601481 (ISSN) Bozorgasareh, H ; Khalesi, J ; Jafari, M ; Gazori, H. O ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A new impeller configuration with innovatively-designed shrouds is introduced, and its impact on the pressure head and efficiency of the semi-open centrifugal pump is explored using experimental and numerical approaches. The proposed design includes attaching specific plates called bladelets to a semi-open impeller to limit the secondary flows over the blades resulting in an increase in the pump head and efficiency. Hydraulic performance of a centrifugal pump with three different bladelets at angles of 30°, 60°, and 90° is investigated experimentally, and the results are compared to semi-open and closed impellers. The values of pressure head and efficiency of the proposed centrifugal pump... 

    Deformation-dependent peak floor acceleration for the performance-based design of nonstructural elements attached to R/C structures

    , Article Earthquake Spectra ; Volume 37, Issue 2 , 2021 , Pages 1035-1055 ; 87552930 (ISSN) Muho, E. V ; Pian, C ; Qian, J ; Shadabfar, M ; Beskos, D. E ; Sharif University of Technology
    SAGE Publications Inc  2021
    Abstract
    This study introduces a simple and efficient method to determine the peak floor acceleration (PFA) at different performance levels for three types of plane reinforced concrete (RC) structures: moment-resisting frames (MRFs), infilled–moment-resisting frames (I-MRFs), and wall-frame dual systems (WFDSs). By associating the structural maximum PFA response with the deformation response, the acceleration-sensitive nonstructural components, and the building contents, can be designed to adhere to the performance-based seismic design of the supporting structure. Thus, the proposed method can accompany displacement-based seismic design methods to design acceleration-sensitive nonstructural elements... 

    Theoretical and experimental investigation of design parameter effects on the slip phenomenon and performance of a centrifugal compressor

    , Article Scientia Iranica ; Volume 28, Issue 1 , 2021 , Pages 291-304 ; 10263098 (ISSN) Rajabpour, S ; Hajilouy Benisi, A ; Manzari, M. T ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Numerous studies have investigated driving equations used to predict the slip factor in centrifugal compressors so far. Inevitably, through these studies, the ow field characteristics have been simplified and the effects of the related parameters have been neglected. The present study, experimentally and numerically, investigates the slip phenomenon in a specific centrifugal compressor with complex blade curves and splitter blades, considering the main effective parameters such as the number of blades, exit angle, etc. To this end, a three-dimensional simulation of the viscous flow field of the compressor via an appropriate turbulence method was performed. In addition, an experimental study... 

    A vacuum-refilled tensiometer for deep monitoring of in-situ pore water pressure

    , Article Scientia Iranica ; Volume 27, Issue 2A , 2021 , Pages 596-606 ; 10263098 (ISSN) Sadeghi, H ; Chiu, A. C. F ; Ng, C. W. W ; Jafarzadeh, F ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Real-time measurement of soil water pressure has been recognized as an essential part of investigating water ow in unsaturated soils. Tensiometry, amongst different measuring techniques, is a common method for direct evaluation of water pressure. However, the lower limit of measurable water pressure by a conventional tensiometer becomes even more limited by increasing its length in the vertical installation. This paper describes the development of a Vacuum-Refilled Tensiometer (VRT) for monitoring soil water pressure independent of installation depth. This is achieved by fixing the distance between pressure sensor and ceramic cup together with incorporating an ancillary vacuumre filling... 

    Numerical modeling of interaction between flexible retaining wall and saturated clayey soil in undrained and drained conditions

    , Article 4th International Conference on Soft Soil Engineering - Soft Soil Engineering, Vancouver, BC, 4 October 2006 through 6 October 2006 ; 2007 , Pages 493-498 ; 0415422809 (ISBN); 9780415422802 (ISBN) Bazrafshan Moghaddam, A ; Pak, A ; Sharif University of Technology
    2007
    Abstract
    In this article, behavior of cantilever retaining walls with various flexibilities, which retain saturated cohesive soil behind, is studied using numerical modeling. Generally, pattern of lateral earth pressure behind retaining walls is complex and this complexity becomes greater for clayey soils. In this investigation, effects of different wall bending stiffnesses, and backfill drainage conditions on the failure height and on the lateral earth pressure are investigated using finite elements. Comparison between the obtained results from numerical simulation and those based on empirical or conventional design methods indicate that soil-structure interaction and c drainage conditions play... 

    Adaptive control of structures by LMS algorithm: A comparative study

    , Article Proceedings of the Institution of Civil Engineers: Structures and Buildings ; Volume 152, Issue 2 , 2002 , Pages 175-191 ; 09650911 (ISSN) Golafshani, A. A ; Mirdamadi, H. R ; Sharif University of Technology
    ICE Publishing Ltd  2002
    Abstract
    By using the normalised least mean squared (NLMS) algorithm, a semi-active multi-variable adaptive controller is designed for a seismically excited structure. There is no need for a large power supply. A number of valves and battery size low-power supplies will suffice. The valves control the amount of flow of a fluid through bypass on-off orifice channels in installed energy dissipating mechanisms. Each mechanism is composed of a piston attached to a A-shaped chevron wind-bracing on each floor and to a cylinder attached to the upper floor. Adaptive controller parameters are estimated by the LMS optimiser, in order to search for optimal non-classical damping coefficients of the dissipating... 

    Computational inverse design for cascaded systems of metasurface optics: comment

    , Article Optics Express ; Volume 30, Issue 20 , 2022 , Pages 36966-37005 ; 10944087 (ISSN) Zarei, S ; Khavasi, A ; Sharif University of Technology
    Optica Publishing Group (formerly OSA)  2022
    Abstract
    In a recently published article by Backer [Opt. Express 27(21), 30308 (2019).], a computational inverse design method is developed for designing optical systems composed of multiple metasurfaces. The forward propagation model used in this method was a discretized version of the angular spectrum propagator described by Goodman [Introduction to Fourier Optics, 1996]. However, slight modifications are necessary to increase the accuracy of this inverse design method. This comment examines the accuracy of the results obtained by the above-mentioned method by a full-wave electromagnetic solver and explains the reason of their difference. Thereafter, slight modifications to the method proposed by... 

    A comprehensive FE study for design of anchored wall systems for deep excavations

    , Article Tunnelling and Underground Space Technology ; Volume 122 , 2022 ; 08867798 (ISSN) Maleki, J ; Pak, A ; Yousefi, M ; Aghakhani, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Anchored wall system is one of the common methods used for deep excavation stabilization adjacent to sensitive structures in urban areas. A key aspect of the stability analysis of deep excavations is the amount of deformations occurring on the facing wall and the adjacent structures. In this research, a large number of parametric studies considering all aspects of soil-structure interaction is carried out for different excavation geometries to find the optimal design, and the outcome is shown in the form of design tables and charts. Also, by a GA-PSO algorithm and using the large database obtained from the numerical simulations, a simple equation is developed that can predict the deflections... 

    From asymmetrical transmitter to the nonreciprocal isolator using time-varying metasurfaces

    , Article Optical and Quantum Electronics ; Volume 54, Issue 5 , 2022 ; 03068919 (ISSN) Khorrami, Y ; Fathi, D ; Khavasi, A ; Rumpf, R. C ; Sharif University of Technology
    Springer  2022
    Abstract
    We present an emulation design method for converting asymmetrical transmitters to nonreciprocal isolators equipped with time-varying metasurfaces. To illustrate the model, we design a structure using a combination of the photonic crystal (PhC) and time-varying metasurface. Moreover, we propose a general approach for numerical analysis of the time-modulated proposed structure using the extension of the transfer matrix method (TMM) which consists of working through the device one layer at a time and calculating an overall transfer matrix including the time-variation of the permittivity and permeability in each layer. Also, we use an optimization algorithm that is less used in the field of...