Loading...
Search for: detection-method
0.013 seconds
Total 90 records

    Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation

    , Article Nature Communications ; Volume 12, Issue 1 , 2021 ; 20411723 (ISSN) Sheibani, S ; Basu, K ; Farnudi, A ; Ashkarran, A ; Ichikawa, M ; Presley, J. F ; Bui, K. H ; Ejtehadi, M. R ; Vali, H ; Mahmoudi, M ; Sharif University of Technology
    Nature Research  2021
    Abstract
    The biological identity of nanoparticles (NPs) is established by their interactions with a wide range of biomolecules around their surfaces after exposure to biological media. Understanding the true nature of the biomolecular corona (BC) in its native state is, therefore, essential for its safe and efficient application in clinical settings. The fundamental challenge is to visualize the biomolecules within the corona and their relationship/association to the surface of the NPs. Using a synergistic application of cryo-electron microscopy, cryo-electron tomography, and three-dimensional reconstruction, we revealed the unique morphological details of the biomolecules and their... 

    Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids

    , Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) Akram, N ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data.... 

    Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids

    , Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) Akram, N ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data.... 

    Design and optimization of a large-scale permanent magnet synchronous generator

    , Article Scientia Iranica ; Volume 29, Issue 1 D , 2022 , Pages 217-229 ; 10263098 (ISSN) Alemi-Rostami, M ; Rezazadeh, G ; Alipour Sarabi, R ; Tahami, F ; Sharif University of Technology
    Sharif University of Technology  2022
    Abstract
    Direct-drive permanent magnet synchronous generators enjoy numerous advantages including improved reliability, low maintenance, long life, and developed performance characteristics. In recent years, many researchers have worked on these generators to enhance their performance, especially for the wind turbine application. The focus of this paper is on the development of a step-by-step method for the design of a permanent magnet synchronous generator. Then, the winding function method is used to model the generator and calculate its output characteristics analytically. The analytical results of the designed generator are validated using Finite Element Analysis (FEA) and it is demonstrated that... 

    Joint multi-user interference and clipping noise cancellation in uplink MC-CDMA system

    , Article AEU - International Journal of Electronics and Communications ; Volume 64, Issue 5 , 2010 , Pages 425-432 ; 14348411 (ISSN) AliHemmati, R ; Azmi, P ; Marvasti, F ; Sharif University of Technology
    Abstract
    In this paper, an iterative method is proposed to jointly cancel multi-user interference and clipping noise in uplink Multi-Carrier Code Division Multiple Access (MC-CDMA) systems. Clipping is the simplest method to overcome high peak-to-average power ratio of multi-carrier signals but it makes the signals distorted. Reconstruction methods use non-distorted samples to reconstruct distorted samples in the receiver but multi-user interference causes the methods do not work properly because all the received samples are distorted due to clipping and interference and so there is no undistorted samples to be used in recovering clipped samples. On the other hand, multi-user interference... 

    Biological removal of nutrients (N & P) from urban wastewater with a modified integrated fixed-film activated sludge-oxic settling anoxic system using an anoxic sludge holding tank

    , Article Water and Environment Journal ; Volume 35, Issue 2 , 2021 , Pages 830-846 ; 17476585 (ISSN) Fazelipour, M ; Takdastan, A ; Borghei, S. M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    In this research, the efficiency of the integrated fixed-film activated sludge-oxic settling anoxic (IFAS-OSA) system in biological nutrient removal was studied. The oxic-settling anoxic (OSA) process is known as a cost effective way to reduce the nutrients (nitrogen and Phosphorus). According to the results, the percentages of total nitrogen removal efficiency in the IFAS, IFAS-OSA2h and IFAS-OSA4h systems were 78.56 ± 2.46, 83.60 ± 0.92 and 85.03 ± 1.69, respectively, while the percentages of phosphorus removal efficiency in these systems were 32.69 ± 8.25, 36.35 ± 6.73 and 39.87 ± 3.61, respectively. The PCR-RFLP method showed that C. albicans had the greatest prevalence (n = 36, 90%).... 

    Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes

    , Article Chemosphere ; Volume 263 , 2021 ; 00456535 (ISSN) Masjoudi, M ; Golgoli, M ; Ghobadi Nejad, Z ; Sadeghzadeh, S ; Borghei, S. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The presence of pharmaceutical micropollutants in water and wastewater is considered a serious environmental issue. To eliminate these pollutants, biodegradation of pharmaceuticals using enzymes such as laccase, is proposed as a green method. In this study, immobilized laccase was used for the removal of two model pharmaceutical compounds, carbamazepine and diclofenac. Polyvinylidene fluoride (PVDF) membrane modified with multi-walled carbon nanotubes (MWCNTs) were synthesized as a tailor-made support for enzyme immobilization. Covalently immobilized laccase from Trametes hirsuta exhibited remarkable activity and activity recovery of 4.47 U/cm2 and 38.31%, respectively. The results also... 

    Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment

    , Article Journal of Hazardous Materials ; Volume 423 , 2022 ; 03043894 (ISSN) Rabiee, N ; Fatahi, Y ; Asadnia, M ; Daneshgar, H ; Kiani, M ; Ghadiri, A. M ; Atarod, M ; Mashhadzadeh, A. H ; Akhavan, O ; Bagherzadeh, M ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Green biomaterials play a crucial role in the diagnosis and treatment of diseases as well as health-related problem-solving. Typically, biocompatibility, biodegradability, and mechanical strength are requirements centered on biomaterial engineering. However, in-hospital therapeutics require an elaborated synthesis of hybrid and complex nanomaterials capable of mimicking cellular behavior. Accumulation of hazardous cations like K+ in the inner and middle ear may permanently damage the ear system. We synthesized nanoplatforms based on Allium noeanum to take the first steps in developing biological porous nanomembranes for hazardous cation detection in biological media. The... 

    CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin

    , Article Chemosphere ; Volume 306 , 2022 ; 00456535 (ISSN) Rabiee, N ; Akhavan, O ; Fatahi, Y ; Ghadiri, A. M ; Kiani, M ; Makvandi, P ; Rabiee, M ; Nicknam, M. H ; Saeb, M. R ; Varma, R. S ; Ashrafizadeh, M ; Nazarzadeh Zare, E ; Sharifi, E ; Lima, E. C ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of... 

    Encapsulation of spinel CuCo2O4 hollow sphere in V2O5-decorated graphitic carbon nitride as high-efficiency double Z-type nanocomposite for levofloxacin photodegradation

    , Article Journal of Hazardous Materials ; Volume 423 , 2022 ; 03043894 (ISSN) Hasanvandian, F ; Shokri, A ; Moradi, M ; Kakavandi, B ; Rahman Setayesh, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, spinel CuCo2O4 (CCO) with a hierarchical hollow sphere morphology was encapsulated in V2O5-decorated ultra-wrinkled graphitic carbon-nitride (VO-UCN) for the first time via a facile glycerol-assisted solvothermal method in the interest of developing a novel high-efficiency double Z-type nano-photocatalyst (denoted as VO-UCN@CCO). The remarkable physicochemical features of the as-prepared nano-photocatalysts were verified using diverse characterization techniques including TGA, XRD, FT-IR, FE-SEM, TEM, BET, UV–vis DRS, PL, EIS, and transient photocurrent techniques. Herein, VO-UCN@CCO nanocomposite was employed for the photodisintegration of levofloxacin (LVOF) antibiotic under...