Loading...
Search for: detection-methods
0.006 seconds

    A novel design and performance optimization methodology for hydraulic Cross-Flow turbines using successive numerical simulations

    , Article Renewable Energy ; Volume 169 , 2021 , Pages 1402-1421 ; 09601481 (ISSN) Mehr, G ; Durali, M ; Khakrand, M. H ; Hoghooghi, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This paper introduces a new methodology for designing and optimizing the performance of hydraulic Cross-Flow turbines for a wide range of operating conditions. The methodology is based on a one-step approach for the system-level design phase and a three-step, successive numerical analysis approach for the detail design phase. Compared to current design methodologies, not only does this approach break down the process into well-defined steps and simplify it, but it also has the advantage that once numerical simulations are conducted for a single turbine, most of the results can be used for an entire class of Cross-Flow turbines. In this paper, after a discussion of the research background, we... 

    Sb2S3 and Cu3SbS4 nanocrystals as inorganic hole transporting materials in perovskite solar cells

    , Article Solar Energy ; Volume 223 , 2021 , Pages 106-112 ; 0038092X (ISSN) Mohamadkhani, F ; Heidariramsheh, M ; Javadpour, S ; Ghavaminia, E ; Mahdavi, S. M ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    One of the key parts of perovskite solar cells which has great influence on their performance and stability is hole transporting layer. Spiro-OMeTAD is extensively used as organic hole transporting material in perovskite solar cells. However, Spiro-OMeTAD is expensive and has low chemical stability. In this study, the solution processed Sb2S3 and Cu3SbS4 nanocrystals have been synthesized and then the n-i-p mesoscopic perovskite solar cells have been fabricated using Spiro-OMeTAD, Sb2S3 and Cu3SbS4 nanocrystals as hole transporting layer at ambient air condition. It is shown that the conduction and valence band levels of the synthesized Sb2S3 and Cu3SbS4 nanocrystals are in the proper... 

    Design of optimum vibration absorbers for a bus vehicle to suppress unwanted vibrations against harmonic and random road excitations

    , Article Scientia Iranica ; Volume 28, Issue 1 , 2021 , Pages 241-254 ; 10263098 (ISSN) Rezazadeh, A ; Moradi, H ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Unwanted vibrations of vehicles are regarded as harmful threats to human health in biomechanical and psychophysical terms. Road roughness is considered as the main cause of unwanted vibrations of bus vehicles. Vertical seat vibrations were found via simulating a 10-Degree-Of-Freedom (10-DOF) model of an intercity bus vehicle under harmonic and random excitations caused by road roughness. To suppress undesirable vibrations, mass-spring-damper passive absorbers were proposed in a 13-Degree-Of- Freedom (13-DOF) model of the bus. Following the optimization of the characteristics of embedded passive absorbers under each seat and implementation of the designed absorbers, the vertical displacement... 

    A vacuum-re lled tensiometer for deep monitoring of in-situ pore water pressure

    , Article Scientia Iranica ; Volume 27, Issue 2 , 2021 , Pages 596-606 ; 10263098 (ISSN) Sadeghi, H ; Chiu, A. C. F ; Ng, C. W. W ; Jafarzadeh, F ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Real-time measurement of soil water pressure has been recognized as an essential part of investigating water ow in unsaturated soils. Tensiometry, amongst di erent measuring techniques, is a common method for direct evaluation of water pressure. However, the lower limit of measurable water pressure by a conventional tensiometer becomes even more limited by increasing its length in the vertical installation. This paper describes the development of a Vacuum-Re lled Tensiometer (VRT) for monitoring soil water pressure independent of installation depth. This is achieved by xing the distance between pressure sensor and ceramic cup together with incorporating an ancillary vacuum-re lling assembly... 

    Water repellent room temperature vulcanized silicone for enhancing the long-term stability of perovskite solar cells

    , Article Solar Energy ; Volume 218 , 2021 , Pages 28-34 ; 0038092X (ISSN) Samadpour, M ; Heydari, M ; Mohammadi, M ; Parand, P ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A key direction toward enhancing the long term and outdoor stability of the perovskite solar cells is encapsulation. As a result, a suitable encapsulation package is required to prevent moisture and oxygen penetration toward the perovskite solar cells. In this work, a low-cost commercially available bilayer structure of poly (methyl methacrylate)/ room-temperature vulcanizing silicone rubber (RTV) encapsulation package for enhancing the long term stability of the perovskite solar cells has been investigated. Encapsulated cells retained more than 80% of the initial efficiency at the environmental condition of 50% moisture, and room temperature after 1000 h, however reference cell efficiency... 

    Nonlinear oscillations of viscoelastic microcantilever beam based on modified strain gradient theory

    , Article Scientia Iranica ; Volume 28, Issue 2 , 2021 , Pages 785-794 ; 10263098 (ISSN) Taheran, F ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    A viscoelastic microcantilever beam is analytically analyzed based on the modified strain gradient theory. Kelvin-Voigt scheme is used to model beam viscoelasticity. By applying Euler-Bernoulli inextensibility of the centerline condition based on Hamilton's principle, the nonlinear equation of motion and the related boundary conditions are derived from shortening effect theory and discretized by Galerkin method. Inner damping, nonlinear curvature effect, and nonlinear inertia terms are also taken into account. In the present study, the generalized derived formulation allows modeling any nonlinear combination such as nonlinear terms that arise due to inertia, damping, and stiffness, as well... 

    Metal-organic framework derived NiSe2/CeO2nanocomposite as a high-performance electrocatalyst for oxygen evolution reaction (OER)

    , Article Sustainable Energy and Fuels ; Volume 5, Issue 11 , 2021 , Pages 2994-3000 ; 23984902 (ISSN) Taherinia, D ; Moravvej, S. H ; Moazzeni, M ; Akbarzadeh, E ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    The development of efficient and cost-effective catalysts for the oxygen evolution reaction is highly desirable for applications that are based on sustainable and clean technologies. In this study, we report the synthesis of a series of cerium(iv) oxide and nickel diselenide nanocomposites (NiSe2/CeO2) as efficient electrocatalysts for the oxygen evolution reaction in an alkaline medium. The ratios of the two substances were optimized to reach the highest catalytic activity. The structure and morphology of synthesized materials were investigated by XRD, FE-SEM, EDX, BET, XPS, and TEM techniques. It was observed that the nanocomposite with a 10 : 1 mass ratio of NiSe2to CeO2showed the best... 

    SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks

    , Article BMC Bioinformatics ; Volume 22, Issue 1 , 2021 ; 14712105 (ISSN) Akbarinejad, S ; Hadadian Nejad Yousefi, M ; Goudarzi, M ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. Results: In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads... 

    Trichloroethylene degradation by PVA-coated calcium peroxide nanoparticles in Fe(II)-based catalytic systems: enhanced performance by citric acid and nanoscale iron sulfide

    , Article Environmental Science and Pollution Research ; Volume 28, Issue 3 , 2021 , Pages 3121-3135 ; 09441344 (ISSN) Ali, M ; Shan, A ; Sun, Y ; Gu, X ; Lyu, S ; Zhou, Y ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this study, the enhanced trichloroethylene (TCE) degradation performance was investigated by polyvinyl alcohol coated calcium peroxide nanoparticles (PVA@nCP) as an oxidant in Fe(II)-based catalytic systems. The nanoscale iron sulfide (nFeS), having an average particle size of 115.4 nm, was synthesized in the laboratory and characterized by SEM, TEM, HR-TEM along with EDS elemental mapping, XRD, FTIR, ICP-OES, and XPS techniques. In only ferrous iron catalyzed system (PVA@nCP/Fe(II)), TCE degradation was recorded at 58.9% in 6 h. In comparison, this value was increased to 97.5% or 99.7% with the addition of citric acid (CA) or nFeS in PVA@nCP/Fe(II) system, respectively. A comparative... 

    SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks

    , Article BMC Bioinformatics ; Volume 22, Issue 1 , 2021 ; 14712105 (ISSN) Akbarinejad, S ; Hadadian Nejad Yousefi, M ; Goudarzi, M ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. Results: In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads... 

    Trichloroethylene degradation by PVA-coated calcium peroxide nanoparticles in Fe(II)-based catalytic systems: enhanced performance by citric acid and nanoscale iron sulfide

    , Article Environmental Science and Pollution Research ; Volume 28, Issue 3 , 2021 , Pages 3121-3135 ; 09441344 (ISSN) Ali, M ; Shan, A ; Sun, Y ; Gu, X ; Lyu, S ; Zhou, Y ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this study, the enhanced trichloroethylene (TCE) degradation performance was investigated by polyvinyl alcohol coated calcium peroxide nanoparticles (PVA@nCP) as an oxidant in Fe(II)-based catalytic systems. The nanoscale iron sulfide (nFeS), having an average particle size of 115.4 nm, was synthesized in the laboratory and characterized by SEM, TEM, HR-TEM along with EDS elemental mapping, XRD, FTIR, ICP-OES, and XPS techniques. In only ferrous iron catalyzed system (PVA@nCP/Fe(II)), TCE degradation was recorded at 58.9% in 6 h. In comparison, this value was increased to 97.5% or 99.7% with the addition of citric acid (CA) or nFeS in PVA@nCP/Fe(II) system, respectively. A comparative... 

    Direct fabrication of phosphorus-doped nickel sulfide and eco-friendly biomass-derived humic acid as efficient electrodes for energy storage applications

    , Article Sustainable Energy and Fuels ; Volume 5, Issue 19 , 2021 , Pages 4869-4881 ; 23984902 (ISSN) Hekmat, F ; Shahi, M ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Development of renewable energies is in parallel with improving high-performance energy storage devices, which can store maximum solar or wind energy and power. Herein, asymmetric energy storage systems are constructed from phosphorus-doped nickel sulfide (P-doped NiS) and biomass-derived humic acid (HA) as positive and negative electrodes, respectively. Initially, nickel sulfide (NiS) nanostructures are directly grown onto nickel foam (NF) via a hydrothermal step. P-doping into the NiS bulk is carried out through a simple hydrothermal process as well. Also, HA is activated via carbonization treatment (A-HA) for employing as the negative electrode's active material. The P-doped NiS-NF... 

    Design and evaluation of hedge trimmer robot

    , Article Computers and Electronics in Agriculture ; Volume 199 , 2022 ; 01681699 (ISSN) Kamandar, M. R ; Massah, J ; Jamzad, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    An autonomous hedge trimmer robot was developed to reduce the harmful effects of traditional hedge trimming method (gasoline-powered hedge trimmer) on operators' bodies and increase the speed and quality of the operation. The robot had five degrees of freedom (PRRRR) structure and was geometrically optimized to simplify the control strategy, enabling it to trim simple, stepped, and circular forms. The control system, consisting of a host computer, servo motors and servo drivers, and controller, guided the robot platform, manipulator, and end-effector as it approached and trimmed the hedge. By using a recognition algorithm and vision-based navigation system, the robot was able to detect the... 

    Selected mapping algorithm for PAPR reduction of space-frequency coded OFDM systems without side information

    , Article IEEE Transactions on Vehicular Technology ; Volume 60, Issue 3 , 2011 , Pages 1211-1216 ; 00189545 (ISSN) Ferdosizadeh Naeiny, M ; Marvasti, F ; Sharif University of Technology
    Abstract
    Selected mapping (SLM) is a well-known technique for peak-to-average-power ratio (PAPR) reduction of orthogonal frequency-division multiplexing (OFDM) systems. In this technique, different representations of OFDM symbols are generated by rotation of the original OFDM frame by different phase sequences, and the signal with minimum PAPR is selected and transmitted. To compensate for the effect of the phase rotation at the receiver, it is necessary to transmit the index of the selected phase sequence as side information (SI). In this paper, an SLM technique is introduced for the PAPR reduction of space-frequency-block-coded OFDM systems with Alamouti coding scheme. Additionally, a suboptimum... 

    Bifurcation structure of two coupled FHN neurons with delay

    , Article Mathematical Biosciences ; Volume 270 , 2015 , Pages 41-56 ; 00255564 (ISSN) Farajzadeh Tehrani, N ; Razvan, M ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    This paper presents an investigation of the dynamics of two coupled non-identical FitzHugh-Nagumo neurons with delayed synaptic connection. We consider coupling strength and time delay as bifurcation parameters, and try to classify all possible dynamics which is fairly rich. The neural system exhibits a unique rest point or three ones for the different values of coupling strength by employing the pitchfork bifurcation of non-trivial rest point. The asymptotic stability and possible Hopf bifurcations of the trivial rest point are studied by analyzing the corresponding characteristic equation. Homoclinic, fold, and pitchfork bifurcations of limit cycles are found. The delay-dependent stability... 

    Health monitoring of structures using few frequency response measurements

    , Article Scientia Iranica ; Volume 17, Issue 6 A , NOVEMBER-DECEMBER , 2010 , Pages 493-500 ; 10263098 (ISSN) Golafshani, A. A ; Kianian, M ; Ghodrati, E ; Sharif University of Technology
    2010
    Abstract
    The development of damage detection techniques for offshore jacket structures is vital for preventing catastrophic events. This paper applies a frequency response based method for the purpose of structural health monitoring. In this approach, the concept of a minimum rank perturbation theory is used. The feasibility of using a finite number of sensors and its effect on damage detection capabilities is investigated. In addition, the performance of the proposed method is evaluated in the case of multiple damages. The aforementioned points are illustrated using the numerical study of a two dimensional jacket platform  

    Online nonlinear structural damage detection using hilbert Huang transform and artificial neural networks

    , Article Scientia Iranica ; Volume 26, Issue 3A , 2019 , Pages 1266-1279 ; 10263098 (ISSN) Vazirizade, M ; Bakhshi, A ; Bahar, O ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In order to implement a damage detection strategy and assess the condition of a structure, Structural Health Monitoring (SHM) as a process plays a key role in structural reliability. This paper aims to present a methodology for online detection of damages that may occur during a strong ground excitation. In this regard, Empirical Mode Decomposition (EMD) is superseded by Ensemble Empirical Mode Decomposition (EEMD) in the Hilbert Huang Transformation (HHT). Although analogous with EMD, EEMD brings about more appropriate Intrinsic Mode Functions (IMFs). IMFs are employed to assess the first-mode frequency and mode shape. Afterwards, Artificial Neural Network (ANN) is applied to predict story... 

    An efficient hardware implementation for a motor imagery brain computer interface system

    , Article Scientia Iranica ; Volume 26, Issue 1 , 2019 , Pages 72-94 ; 10263098 (ISSN) Malekmohammadi, A ; Mohammadzade, H ; Chamanzar, A ; Shabany, M ; Ghojogh, B ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    Brain Computer Interface (BCI) systems, which are based on motor imagery, enable humans to command artificial peripherals by merely thinking about the task. There is a tremendous interest in implementing BCIs on portable platforms, such as Field Programmable Gate Arrays (FPGAS) due to their low-cost, low-power and portability characteristics. This article presents the design and implementation of a Brain Computer Interface (BCI) system based on motor imagery on a Virtex-6 FPGA. In order to design an accurate algorithm, the proposed method avails statistical learning methods such as Mutual Information (MI), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM). It also uses... 

    Online nonlinear structural damage detection using hilbert huang transform and artificial neural networks

    , Article Scientia Iranica ; Volume 26, Issue 3A , 2019 , Pages 1266-1279 ; 10263098 (ISSN) Vazirizade, M ; Bakhshi, A ; Bahar, O ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In order to implement a damage detection strategy and assess the condition of a structure, Structural Health Monitoring (SHM) as a process plays a key role in structural reliability. This paper aims to present a methodology for online detection of damages that may occur during a strong ground excitation. In this regard, Empirical Mode Decomposition (EMD) is superseded by Ensemble Empirical Mode Decomposition (EEMD) in the Hilbert Huang Transformation (HHT). Although analogous with EMD, EEMD brings about more appropriate Intrinsic Mode Functions (IMFs). IMFs are employed to assess the first-mode frequency and mode shape. Afterwards, Artificial Neural Network (ANN) is applied to predict story... 

    Impact of scale, activation solvents, and aged conditions on gas adsorption properties of UiO-66

    , Article Journal of Environmental Management ; Volume 274 , 2020 Ahmadijokani, F ; Ahmadipouya, S ; Molavi, H ; Rezakazemi, M ; Aminabhavi, T. M ; Arjmand, M ; Sharif University of Technology
    Academic Press  2020
    Abstract
    This work reports on the potential application of UiO-66 in gas sweetening and its structural stability against water, air, dimethylformamide (DMF), and chloroform. The UiO-66 nanoparticles were solvothermally synthesized at different scales and activated via solvent exchange technique using chloroform, methanol, and ethanol. Thus prepared and aged MOFs were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), and nitrogen adsorption-desorption analysis. The chloroform-activated MOF showed the largest surface area among all activation solvents, and presented high uptakes of 8.8 and 4.3 mmol/g for CO2...