Loading...
Search for: dimensionless
0.012 seconds

    Dimensionless correlation for the prediction of permeability reduction rate due to calcium sulphate scale deposition in carbonate grain packed column

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 41, Issue 3 , 2010 , Pages 268-278 ; 18761070 (ISSN) Tahmasebi, H. A ; Kharrat, R ; Soltanieh, M ; Sharif University of Technology
    Abstract
    In this work, an experimental and theoretical study has been conducted to investigate the permeability reduction due to CaSO4 scale deposition in packed column porous media. Permeability reduction by calcium sulphate deposition follows a systematic trend considering various important parameters that are affected in this complex process. Hence, a novel dimensionless model has been proposed for the prediction of permeability reduction rate with high accuracy. The developed model is based on the data obtained from glass bead and carbonate grain packed column at low pressure. The proposed model was validated with Berea sandstone cores data at high pressure (100-20,678 kPa), various flow rates... 

    An Analytic Solution for the Frontal Flow Period in 1D Counter-Current Spontaneous Imbibition into Fractured Porous Media Including Gravity and Wettability Effects

    , Article Transport in Porous Media ; Volume 89, Issue 1 , 2011 , Pages 49-62 ; 01693913 (ISSN) Mirzaei Paiaman, A ; Masihi, M ; Standnes, D. C ; Sharif University of Technology
    Abstract
    Including gravity and wettability effects, a full analytical solution for the frontal flow period for 1D counter-current spontaneous imbibition of a wetting phase into a porous medium saturated initially with non-wetting phase at initial wetting phase saturation is presented. The analytical solution applicable for liquid-liquid and liquid-gas systems is essentially valid for the cases when the gravity forces are relatively large and before the wetting phase front hits the no-flow boundary in the capillary-dominated regime. The new analytical solution free of any arbitrary parameters can also be utilized for predicting non-wetting phase recovery by spontaneous imbibition. In addition, a new... 

    Numerical simulation of collision between two droplets in the T-shaped microchannel with lattice Boltzmann method

    , Article AIP Advances ; Volume 6, Issue 11 , 2016 ; 21583226 (ISSN) Merdasi, A ; Ebrahimi, S ; Moosavi, A ; Shafii, M. B ; Kowsary, F ; Sharif University of Technology
    American Institute of Physics Inc 
    Abstract
    In this study, the Lattice Boltzmann Method (LBM) is used to investigate the deformation of two droplets within microfluidic T-junctions (MFTD). In order to increase the accuracy the two immiscible fluids are modeled using the He-Chen-Zhang model. First, this model is applied to ensure that the surface tension effect existing between the droplets and the continuous fluid is properly implemented in the model. Then the collision and merging of the two droplets within the intersection of a T-shaped microchannel is investigated. For generating droplet formation the effects of relevant dimensionless parameters such as the Reynolds, the Weber numbers as well as a collision parameter affecting the... 

    Dynamic stability analysis of single walled carbon nanocone conveying fluid

    , Article Computational Materials Science ; Volume 113 , 2016 , Pages 123-132 ; 09270256 (ISSN) Rasouli Gandomani, M ; Noorian, M. A ; Haddadpour, H ; Fotouhi, M. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    This report aims the study of dynamic stability of single walled carbon nanocone for some axial length conditions and declination angles of 60°, 120°and 240°. For dynamic stability analysis of Single Walled Carbon Nanocone (SWCNC), the mode shapes and frequencies of the carbon nanocone are extracted using the molecular mechanics approach. The mechanical properties of SWCNC were obtained by the Molecular Mechanics (MM) method. The obtained parameters are used for extraction of the conical shell virtual model of nanocone with the same dimensions. The equations of coupled fluid-structural dynamics of SWCNC are derived using the modal expansion for the structural displacements of the conical... 

    Discharge capacity of conventional side weirs in supercritical conditions

    , Article 4th European Congress of the International Association of Hydroenvironment engineering and Research, IAHR 2016, 27 July 2016 through 29 July 2016 ; 2016 , Pages 658-664 ; 9781138029774 (ISBN) Parvaneh, A ; Jalili Ghazizadeh, M. R ; Kabiri Samani, A ; Nekooie, M. A ; Sharif University of Technology
    CRC Press/Balkema  2016
    Abstract
    Side weirs are widely used for level control and flow regulation in hydraulic engineering applications such as irrigation, land drainage, and sewer systems. These hydraulic structures allow a part of the flow to spill laterally when the surface of the flow in the main channel rises above the weir crest. The supercritical flow over a side-weir is a typical case of spatially varied flow with decreasing discharge. This study is aimed at investigating the variations of specific energy along the side-weir using experimental results. Some diagrams have been presented in terms of dimensionless ratio of diverted discharge to total discharge. These diagrams which can be used in the design of side... 

    Determination of discharge coefficient of triangular labyrinth side weirs with one and two cycles using the nonlinear PLS method

    , Article Sustainable Hydraulics in the Era of Global Change - Proceedings of the 4th European Congress of the International Association of Hydroenvironment engineering and Research, IAHR 2016, 27 July 2016 through 29 July 2016 ; 2016 , Pages 653-657 ; 9781138029774 (ISBN) Nekooie, M. A ; Parvaneh, A ; Kabiri Samani, A ; Sharif University of Technology
    CRC Press/Balkema  2016
    Abstract
    Side weirs are hydraulic control structures widely used in irrigation, drainage networks and waste water treatment plants. These structures can be used for adjusting and diverting of flow with minimum energy loss. In spite of many studies were carried out on rectangular side weirs, the studies on oblique and labyrinth side weirs are scarce. In this study, based on the experimental data from more than 210 laboratory tests and through using the multivariable nonlinear partial least square (PLS) method, two nonlinear equations are presented for discharge coefficient CM of triangular labyrinth side weirs with one and two cycles. The obtained empirical equations relating CM with the relevant... 

    Comparison of the membrane morphology based on the phase diagram using PVP as an organic additive and TiO2 as an inorganic additive

    , Article Polymer (United Kingdom) ; Volume 97 , 2016 , Pages 559-568 ; 00323861 (ISSN) Mohsenpour, S ; Safekordi, A ; Tavakolmoghadam, M ; Rekabdar, F ; Hemmati, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    The morphology of symmetric and asymmetric membranes obtained by precipitation can be rationalized by thermodynamic and kinetic parameters. Such parameters which the former relates to thermodynamic effect and the latter controls the time of separation of the cast solution film immersing in the non-solvent bath from the glass plate were calculated as dimensionless parameters for further analysis. Phase diagram was used to consider the role of thermodynamic. The kinetic properties of the membranes could be investigated by the rate of mass transfer between solvent and non-solvent. By adding additives to the polymer solution the desire for becoming two phase and also viscosity of the solution... 

    Analytical solution of chamber effective length in the axial engine

    , Article Proceedings of the ASME Fluids Engineering Division Summer Conference 2009, FEDSM2009, 2 August 2009 through 6 August 2009, Vail, CO ; Volume 1, Issue PART B , 2009 , Pages 881-888 ; 9780791843727 (ISBN) Dehghani, S. R ; Mozafari, A. A ; Saidi, M. H ; Ghafourian, A ; Sharif University of Technology
    Abstract
    In this research, effective length of one-dimensional combustion in a dilute monopropellant spray, constant area and fixed volume chamber is analytically predicted. A new evaporation rate in the form of d k+1 relation is introduced. In the case of controlling vaporization by radiative heat transfer, k is equal to zero, and when molecular processes control the vaporization, k will be equal to one and in some cases vaporization data need the value of k greater than one to fit properly to related equation. Development of this approach can be used in the design of combustion chambers with optimum length and with using vaporization rate of R = R0〈r〉 0 k/〈r〉k. Spray equation and distribution... 

    Transformation of sliding motion to rolling during spheres collision

    , Article Granular Matter ; Volume 19, Issue 4 , 2017 ; 14345021 (ISSN) Nejat Pishkenari, H ; Kaviani Rad, H ; Jafari Shad, H ; Sharif University of Technology
    Abstract
    In this research, we have investigated the three-dimensional elastic collision of two balls, based on friction in the tangential plane. Our aim is to offer analytical closed form relations for post collision parameters such as linear and angular velocities, collision time and tangential and normal impulse in three dimensions. To simplify the problem, stick regime is not considered. In other words, balls have a low tangential coefficient of restitution. Sliding, sliding then rolling, and rolling at the beginning of contact are three cases that can occur during impact which have been considered in our research. The normal interaction force is described by the Hertz contact force and... 

    Characterization of three-phase flow in porous media using the ensemble Kalman filter

    , Article Scientia Iranica ; Volume 24, Issue 3 , 2017 , Pages 1281-1301 ; 10263098 (ISSN) Jahanbakhshi, S ; Pishvaie, M. R ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    In this study, the ensemble Kalman filter is used to characterize threephase flow in porous media through simultaneous estimation of three-phase relative permeabilities and capillary pressures from production data. Power-law models of relative permeability and capillary pressure curves are used and the associated unknown parameters are estimated by assimilating the measured historical data. The estimation procedure is demonstrated on a twin numerical setup with two different scenarios, in which a synthetic 2D reservoir under three-phase flow is considered. In the first scenario, all the endpoints are assumed to be known and only the shape factors are estimated during the assimilation... 

    Experimental investigation of two phase flow in horizontal wells: Flow regime assessment and pressure drop analysis

    , Article Experimental Thermal and Fluid Science ; Volume 88 , 2017 , Pages 55-64 ; 08941777 (ISSN) Shams, R ; Tavakoli, A ; Shad, S ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    Multiphase flow is fundamental to different fields of engineering and science including petroleum engineering. In oil and gas, flow of multiple phases inside wells is a common phenomenon. In such conditions, petroleum engineers deal with different design and operational difficulties due to complexities involved in flow of multiple phases inside a well. Unlike flow of gas and liquid inside a well, the liquid-liquid flow inside a horizontal well has received rather less attention. This study is aimed at experimentally investigating multiphase flow in a horizontal well by using a 12 m length and 30 mm diameter well made of Plexiglas. Despite the importance of defining pattern transition... 

    A new approach to characterize the performance of heavy oil recovery due to various gas injection

    , Article International Journal of Multiphase Flow ; 2017 ; 03019322 (ISSN) Rostami, B ; Pourafshary, P ; Fathollahi, A ; Yassin, M. R ; Hassani, K ; Khosravi, M ; Mohammadifard, M ; Dangkooban, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The performance of CO2 injection into a semi-heavy oil reservoir was investigated at reservoir conditions, using highly permeable sandstone in a complete series of PVT tests and coreflooding experiments. Analysis of involved parameters such as: injection rate, injectant type and reservoir pressure were also considered. Oil viscosity reduction and oil swelling are the most influential mechanisms of enhanced oil recovery in this process. The results demonstrated that CO2 injection would decrease the interfacial tension for the high permeable medium in the absence of capillarity, but this reduction may not improve the recovery drastically. One of the main important aspects of this work is the... 

    Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode I fracture toughness of rock-like material

    , Article Rock Mechanics and Rock Engineering ; Volume 51, Issue 1 , 2018 , Pages 173-185 ; 07232632 (ISSN) Haeri, H ; Sarfarazi, V ; Yazdani, M ; Bagher Shemirani, A ; Hedayat, A ; Sharif University of Technology
    Abstract
    This paper presents a new procedure for determining the fracture toughness of rock-like specimens using the diametric compression test with the center-cracked horseshoe disk (CCHD) method. Using finite element analysis, a dimensionless stress intensity factor was obtained and a formula was rendered for determining mode I fracture toughness. To evaluate the accuracy of the measurement results produced by the CCHD method, fracture toughness experiments were conducted on the same rock-like material using the notched Brazilian disk (NBD) method. The CCHD tests were simulated using a two-dimensional particle flow code for validation of the experimental results, and a great agreement between the... 

    Empirical models for minimum fluidization velocity of particles with different size distribution in tapered fluidized beds

    , Article Powder Technology ; Volume 338 , 2018 , Pages 563-575 ; 00325910 (ISSN) Rasteh, M ; Farhadi, F ; Ahmadi, G ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The particle size distribution (PSD) is known as an important parameter affecting the hydrodynamic behavior of fluidized beds. In this study, extensive experimental data for fluidization of particles with different PSDs in tapered fluidized beds was presented. In the experimentations, three Geldart B powders with four average diameters and various PSDs were used. The experimental results showed that the minimum fluidization velocity (Umf) for particles with flat and binary size distributions were roughly the same; moreover, they were up to 25% larger than the Umf values for narrow cut particle size distribution. The Umf values for Gaussian size distribution were lower than those of narrow... 

    Bubble dynamics in rotating flow under an accelerating field

    , Article Physics of Fluids ; Volume 30, Issue 8 , 2018 ; 10706631 (ISSN) Maneshian, B ; Javadi, K ; Taeibi Rahni, M ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    Three-dimensional bubble dynamics in rotating flow under an accelerating field such as a centrifugal one is studied in this work. We employ the lattice Boltzmann method in two phase flows to simulate bubble dynamics for different Bond and Morton numbers of 0.1, 1, 10, and 100 and 0.001, 0.01, 0.1, 1, 10, and 100, respectively. Another dimensionless number named as dimensionless force, F∗, which is the ratio of buoyancy force to centripetal force is defined to explain the dynamics of the bubbles. In this work, we consider 5×10-7≤F∗≤5. The results show that bubbles in rotating flows have different kinds of motions such as spinning, rotating, and translating. Based on the ratios of the forces... 

    A new approach to characterize the performance of heavy oil recovery due to various gas injection

    , Article International Journal of Multiphase Flow ; Volume 99 , 2018 , Pages 273-283 ; 03019322 (ISSN) Rostami, B ; Pourafshary, P ; Fathollahi, A ; Yassin, M. R ; Hassani, K ; Khosravi, M ; Mohammadifard, M ; Dangkooban, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The performance of CO2 injection into a semi-heavy oil reservoir was investigated at reservoir conditions, using highly permeable sandstone in a complete series of PVT tests and coreflooding experiments. Analysis of involved parameters such as: injection rate, injectant type and reservoir pressure were also considered. Oil viscosity reduction and oil swelling are the most influential mechanisms of enhanced oil recovery in this process. The results demonstrated that CO2 injection would decrease the interfacial tension for the high permeable medium in the absence of capillarity, but this reduction may not improve the recovery drastically. One of the main important aspects of this work is the... 

    Displacement ratios for structures with material degradation and foundation uplift

    , Article Bulletin of Earthquake Engineering ; Volume 17, Issue 9 , 2019 , Pages 5133-5157 ; 1570761X (ISSN) Dolatshahi, K. M ; Vafaei, A ; Kildashti, K ; Hamidia, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this paper, combined effects of material degradation, p-delta, and foundation uplift are incorporated in a soil-structure-interaction (SSI) framework to assess seismic response of a single-degree-of-freedom system. The considered phenomenological systems represent a column with a lumped mass on top is placed on a rigid foundation. The foundation is mounted on Winkler springs and dashpots to take account of soil-foundation compliance and material/radiation damping. The springs are tensionless to guarantee that uplift is properly modelled. The model is verified for two specific limit cases with the code and literature to make sure that the model is capable of capturing SSI and foundation... 

    Mass transfer coefficients of extracting Mo (VI) and W (VI) in a stirred tank by solvent extraction using mixture of Cyanex272 and D2EHPA

    , Article Separation Science and Technology (Philadelphia) ; 2019 ; 01496395 (ISSN) Shakib, B ; Torab Mostaedi, M ; Outokesh, M ; Asadollahzadeh, M ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this study, the mass transfer evaluation of an agitated liquid-liquid system for the extraction of molybdenum and tungsten from aqueous sulfate solution was investigated. It was found from batch experiments for separation of molybdenum from tungsten that the initial aqueous pH, Cyanex272 and D2EHPA concentration, contact time, dispersed phase volume fraction and impeller speed were optimized at 1.3, 0.07 M, 0.29 M, 15 min, 0.09 and 280 rpm, respectively. The results indicate that a suitable composition for stripping is 1.5 M NH4OH and 0.6 M NH4F. Furthermore, a modified correlation based on dimensionless numbers was derived for the prediction of continuous phase mass transfer in the... 

    Frequency characteristics of a viscoelastic graphene nanoplatelet–reinforced composite circular microplate

    , Article JVC/Journal of Vibration and Control ; 2020 Ghabussi, A ; Habibi, M ; NoormohammadiArani, O ; Shavalipour, A ; Moayedi, H ; Safarpour, H ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    This is the first research on the frequency analysis of a graphene nanoplatelet composite circular microplate in the framework of a numerical-based generalized differential quadrature method. Stresses and strains are obtained using the higher order shear deformation theory. The microstructure is surrounded by a viscoelastic foundation. Rule of the mixture is used to obtain varying mass density and Poisson’s ratio, whereas the module of elasticity is computed by a modified Halpin–Tsai model. Governing equations and boundary conditions of the graphene nanoplatelet composite circular microplate are obtained by implementing Hamilton’s principle. The results show that outer to inner radius ratio... 

    Effect of gas impurity on the convective dissolution of CO2 in porous media

    , Article Energy ; Volume 199 , May , 2020 Mahmoodpour, S ; Amooie, M. A ; Rostami, B ; Bahrami, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Growing needs for energy and the essential role of fossil fuels in energy market require attempts such as carbon dioxide (CO2) sequestration in saline aquifers to stabilize and mitigate atmospheric carbon concentrations. The possibility of co-injection of impurities along with CO2 allows for the direct disposal of flue gas and hence a significant reduction in the cost of CO2 sequestration projects by eliminating the separation process. In this study, the results of series of novel experiments in a high-pressure visual porous cell are reported, which allow for visually and quantitatively examining the dynamics of convective dissolution in brine-saturated porous media in the presence of an...