Loading...
Search for: dissociation
0.005 seconds
Total 59 records

    Multielectron dissociative ionization of methane and formaldehyde molecules with optimally tailored intense femtosecond laser pulses

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 185 , 2017 , Pages 298-303 ; 13861425 (ISSN) Irani, E ; Anvari, A ; Sadighi Bonabi, R ; Monfared, M ; Sharif University of Technology
    Abstract
    The multielectron dissociative ionization of CH4 and CH2O molecules has been investigated using optimum convolution of different dual tailored short laser pulses. Based on three dimensional molecular dynamics simulations and TDDFT approach, the dissociation probability is enhanced by designing the dual chirped-chirped laser pulses and chirped-ordinary laser pulses for formaldehyde molecule. However, it is interesting to notice that the sensitivity of enhanced dissociation probability into different tailored laser pulses is not significant for methane molecule. In this presented modifications, time variation of bond length, velocity, time dependent electron localization function and evolution... 

    Survying the Process of Photodissociation of Methane with Using the Femto Second Lasers

    , M.Sc. Thesis Sharif University of Technology Irani, Elnaz (Author) ; Sadighi Bonabi, Rasoul (Supervisor)
    Abstract
    In this project , the dissociation of methane in the presence of Ti:Sapphire laser with parameters of 1014wcm-2, 800nm wave lengths and 100fs pulse width have been investigated theoretically, by using the Gaussian03 package –computational chemistry program that is capable of predicting many properties of atomic and molecular systems. It is based upon the fundamental laws of quantum mechanism. By considering some limitations in approximate techniques and incapability of advancing them, numerical calculation of solving the time dependent Schrödinger equation in order to improve the results and find more quantum dynamic information is applied. Therefore at first, by Gaussian03 package some of... 

    Possibility of methane conversion into heavier hydrocarbons using nanosecond lasers

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 156 , 2016 , Pages 118-122 ; 13861425 (ISSN) Navid, H. A ; Irani, E ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Effect of nanosecond lasers on the methane dissociation is experimentally studied by using three different laser wavelengths at 248 nm, 355 nm and 532 nm. C2H2 generation is measured as a major reaction product in experiments and the energy consumptions in production of this component are measured as 5.8 MJ/mol, 3.1 MJ/mol and 69.0 MJ/mol, for 355 nm, 532 nm and 248 nm wavelengths, respectively. The mechanism of conversion and production of new stable hydrocarbons is also theoretically investigated. It is found that in theoretical calculations, the ion-molecule reactions should be included and this leads to a unique approach in proper explanation of the experimental measurements  

    Binding energy of bipartite quantum systems: Interaction, correlations, and tunneling

    , Article Physical Review A ; Volume 101, Issue 1 , 2020 Afsary, M ; Bathaee, M ; Bakhshinezhad, F ; Rezakhani, A. T ; Bahrampour, A. R ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    We provide a physically motivated definition for the binding energy (or bond dissociation) of a bipartite quantum system. We consider coherently applying an external field to cancel out the interaction between the subsystems, to break their bond and separate them as systems from which no work can be extracted coherently by any cyclic evolution. The minimum difference between the average energies of the initial and final states obtained this way is defined as the binding energy of the system. We show that the final optimal state is a passive state. We discuss how the required evolution can be realized through a sequence of control pulses. The utility of our definition is illustrated through... 

    Carbon dioxide reforming of methane by pulsed glow discharge at atmospheric pressure: the effect of pulse compression

    , Article Journal of Applied Physics ; Volume 101, Issue 12 , 2007 ; 00218979 (ISSN) Ghorbanzadeh, A. M ; Modarresi, H ; Sharif University of Technology
    2007
    Abstract
    Methane reforming by carbon dioxide in pulsed glow discharge at atmospheric pressure is examined. The plasma pulse is compressed to less than 50 ns. This compression enables one to work at higher frequencies, over 3 kHz, without glow-arc transition. The main products of the reaction are synthetic gases (H2, CO) and C2 hydrocarbons. Approximately 42% of plasma energy goes to the chemical dissociation, when the reactant ratio is C O2 C H4 =1. At this point, the energy expense is less than 3.8 eV per converted molecule while reactant conversions are relatively high reaching to 55% (C H4) and 42% (C O2). The reactor energy performance even gets better at higher C O2 C H4 ratios. While energy... 

    A perspective on electrostatics in gas-solid fluidized beds: Challenges and future research needs

    , Article 13th International Conference on Fluidized Bed Technology, CFB 2021, 10 May 2021 through 14 May 2021 ; 2021 , Pages 426-431 ; 9781771368506 (ISBN) Fotovat, F ; Bi, X. T ; Grace, J. R ; Sharif University of Technology
    GLAB Reactor and Fluidization Technologies  2021
    Abstract
    This paper provides a perspective on the current knowledge and potential areas of future research related to electrostatics in fluidized beds. Aspects addressed include characterization techniques, interplay between electrostatics and hydrodynamics, charge control methods, applications of tribo-electrostatic fluidization systems, and computational simulations which account for electrostatic forces, as well as other forces. This is a complex research field involving fluid mechanics, powders, and electrical physics. © 2021 CFB 2021 - Proceedings of the 13th International Conference on Fluidized Bed Technology. All rights reserved  

    High energy efficiency in syngas and hydrocarbon production from dissociation of CH4-CO2 mixture in a non-equilibrium pulsed plasma

    , Article Journal of Physics D: Applied Physics ; Volume 38, Issue 20 , 2005 , Pages 3804-3811 ; 00223727 (ISSN) Ghorbanzadeh, A. M ; Norouzi, S ; Mohammadi, T ; Sharif University of Technology
    2005
    Abstract
    The efficient production of syngas from a CH4+CO2 mixture in an atmospheric pulsed glow discharge, sustained by corona pre-ionization, has been investigated. The products were mainly syngas (CO, H2) and hydrocarbons up to C4, with acetylene having the highest selectivity. The energy efficiency was within 15-40% for different experimental conditions, which demonstrates a comprehensive improvement relative to the achievements of other types of non-equilibrium plasma. These values are, however, comparable with the efficiencies obtained by gliding arc plasmas but this plasma operates at near room temperature. Furthermore, it has been shown that the energy efficiency is increased by decreasing... 

    Methane conversion to hydrogen and higher hydrocarbons by double pulsed glow discharge

    , Article Plasma Chemistry and Plasma Processing ; Volume 25, Issue 1 , 2005 , Pages 19-29 ; 02724324 (ISSN) Ghorbanzadeh, A. M ; Matin, N. S ; Sharif University of Technology
    2005
    Abstract
    Pulsed atmospheric glow plasma, sustained by corona discharge, was utilized to convert methane. Analysis by gas chromatography showed that hydrogen and C2-products are the main constituents of outlet mixture while C 2+-products with small concentrations were also detected. The chemical energy efficiency turned out to be about 9% for the best result obtained by this type of reactor. It has been shown that more improvement of energy efficiency is possible by increasing ' the pulse repetition rate  

    Theoretical investigation on antioxidant activity of bromophenols from the marine red alga Rhodomela confervoides: H-atom vs electron transfer mechanism

    , Article Journal of Agricultural and Food Chemistry ; Volume 61, Issue 7 , 2013 , Pages 1534-1541 ; 00218561 (ISSN) Javan, A. J ; Javan, M. J ; Tehrani, Z. A ; Sharif University of Technology
    2013
    Abstract
    Bromophenols are known as antioxidant radical scavengers for some biomolecules such as those in marine red alga. Full understanding of the role played by bromophenols requires detailed knowledge of the radical scavenging activities in probable pathways, a focus of ongoing research. To gain detailed insight into two suggested pathways, H-atom transfer and electron transfer, theoretical studies employing first principle quantum mechanical calculations have been carried out on selected bromophenols. Detailed investigation of the aforementioned routes revealed that upon H-atom abstraction or the electron transfer process, bromophenols cause an increase in radical species in which the unpaired... 

    Adsorption and dissociation of hydrogen peroxide on small Pd xM3-x (M = Pt, Cu; X = 1-3) clusters: A hybrid density functional study

    , Article Molecular Physics ; Volume 109, Issue 14 , May , 2011 , Pages 1797-1804 ; 00268976 (ISSN) Nahali, M ; Gobal, F ; Arab, R ; Sharif University of Technology
    2011
    Abstract
    The adsorption and dissociation of H2O2 on small PdxM3-x (M=Pt, Cu; x = 1-3) clusters is investigated using the B3PW91 hybrid density functional method. Natural bond orbitals are analysed to obtain partial charges on atoms, dipole moments, bond orders, and hybrid orbitals of the PdxM3-x-H2O2 systems. The calculated adsorption energies are in the range of -0.32 to -2.12 eV. Generally, H2O2 adsorbs on top positions through one of its oxygen atoms and only in a few cases reacts with the cluster through both oxygen and hydrogen sides. In the latter case the cluster sites which are negatively charged interact with the hydrogen atoms. Interestingly, on the triplet Pd2Pt cluster, H2O2 dissociates... 

    Optimal control of dissociation of nitrogen molecule with intense ultra-short laser pulse shaping

    , Article Journal of Molecular Structure ; Volume 1083 , March , 2015 , Pages 121-126 ; 00222860 (ISSN) Rasti, S ; Irani, E ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    (GraphPresented) The quantum optimal control theory in conjunction with time dependent density functional theory is used to optimize the laser pulse shape for dissociation of nitrogen molecule. For several initial peak intensities and frequency ranges, the optimum shapes are produced and compared to determine the most efficient pulse. Ehrenfest molecular dynamics model is also used to test the dissociation process. The corresponding snapshots of density and time dependent electron localization function are presented. It is noticed that when the frequency ranges of laser pulses are doubled, it leads to 60% faster dissociation of N2 molecule  

    Bonding, structural and thermodynamic analysis of dissociative adsorption of H3O+ ion onto calcite (10 1 ¯ 4) surface: CPMD and DFT calculations

    , Article Journal of Molecular Modeling ; Volume 23, Issue 12 , 2017 ; 16102940 (ISSN) Ghatee, M. H ; Koleini, M. M ; Sharif University of Technology
    Abstract
    We used density functional theory (DFT) and Car-Parrinello molecular dynamics (CPMD) simulation to investigate the adsorption and bond formation of hydronium ion (H3O+) onto a (10 1 ¯ 4) calcite surface. For surface coverage of 25% to 100%, the nature of H3O+ interaction was explored through electron density and energetics in the context of bond critical points. The adsorbate–adsorbent structure was studied by simulation of pair correlation function. The results revealed that dissociation into water molecule(s) and proton(s) complements H3O+ ion(s) adsorbtion. The H2O molecule adsorbs onto the surface via its O atom, and interacts with surface calcium in a closed-shell mode; the H+ ion makes... 

    Does gold cluster promote or scavenge radicals? A controversy at DFT

    , Article Journal of Physical Organic Chemistry ; 2017 ; 08943230 (ISSN) Ahmadi, A ; Kassaee, M. Z ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2017
    Abstract
    Anticancer character of gold cluster has been indicated through its free radical scavenging properties. This is in contrast to its free radical promoting ability suggested by other workers. Here, we address this controversy by probing the stabilizing effects of Au3 cluster on RO• vs its impacts on RO-H bond dissociation enthalpy, at B3LYP/ LACVP+* level (RH, methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, and phenyl). In the presence of Au3 cluster, bond dissociation enthalpy of O-H bond and the spin density at the RO• oxygen are reduced dramatically. These are clear evidences for both the Au3 facilitation of the RO-H bond breakage and its scavenging of RO• radical. Since O-Au anchoring... 

    Does gold cluster promote or scavenge radicals? A controversy at DFT

    , Article Journal of Physical Organic Chemistry ; Volume 31, Issue 3 , 2018 ; 08943230 (ISSN) Ahmadi, A ; Kassaee, M. Z ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Anticancer character of gold cluster has been indicated through its free radical scavenging properties. This is in contrast to its free radical promoting ability suggested by other workers. Here, we address this controversy by probing the stabilizing effects of Au3 cluster on RO• vs its impacts on RO–H bond dissociation enthalpy, at B3LYP/ LACVP+* level (R═H, methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, and phenyl). In the presence of Au3 cluster, bond dissociation enthalpy of O–H bond and the spin density at the RO• oxygen are reduced dramatically. These are clear evidences for both the Au3 facilitation of the RO–H bond breakage and its scavenging of RO• radical. Since O–Au... 

    , M.Sc. Thesis Sharif University of Technology Eiravani, Hossaen (Author) ; Fattahi, Alireza (Supervisor)
    Abstract
    It is believed that intramolecular hydrogen bonding and also conjugation can affect the acidity power of organic molecules. But simultaneous effects of intramolecular hydrogen bonding and conjugation have not investigated systematically yet. In this project, we choose Ascorbic acid as a basic structure. Then we have changed its structure conveniently, and have explored the roles of hydrogen bonding and conjugation on the acidity of this molecule by using B3LYP functional with the 6-311++G(d,p) basis set. After that we similarly investigate these effects on the acidity of three different systems, including enols, enamines and alcohols. In this project we probe the effect of different hydrogen... 

    Molecular Dynamics Study in the Interaction of Intense Femtosecond Laser Pulse with Methane Molecule

    , Ph.D. Dissertation Sharif University of Technology Irani, Elnaz (Author) ; Sadighi-Bonabi, Rasul (Supervisor) ; Anvari, Abbas (Co-Advisor) ; Asgari, Reza (Co-Advisor)
    Abstract
    In this project, the ionization and dissociation of methane molecule by intense femto-second lasers has been studied. Dissociation probability is calculated for interacting CH4 molecule under Ti: Sapphire laser pulse with pulse durations of 10- 40fs in intensities at the range of 1014-1016 Wcm-2. Calculations are carried out with time-dependent density functional theory using Gaussian03 and Octopus packages as powerful computational chemical physics programs. Due to importance of the dependence of interaction dynamics to laser parameters, the effect of these parameters including different intensities, polarization, various pulse durations and pulse envelopes are investigated. The optimal... 

    Super-hydrophilic characteristic of thermochemically prepared CdS nanocrystals

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Vol. 58 , April , 2014 , pp. 146-152 ; ISSN: 13869477 Marandi, M ; Taghavinia, N ; Babaei, A ; Sharif University of Technology
    Abstract
    CdS nanocrystals were thermochemically (thermally activated) synthesized thorough the reaction between CdSO4 and Na2S 2O3 in an aqueous solution. Thioglycolic Acid (TGA) was used as the capping agent and catalyst of the reaction. The method was based on heat activated dissociation of Na2S2O3 and controllable release of S and free electrons in the solution. CdS NCs were formed by heating the sample solution at 96 C for 1 h. The results of optical spectroscopy and transmission electron microscopy demonstrated round shape NCs with sizes about 3.0 nm. The nanocrystals were also luminescent and represented a broad emission with a peak located at 515 nm and FWHM of 160 nm. Several samples were... 

    Electrostatically defying cation-cation clusters: Can likes attract in a low-polarity environment?

    , Article Journal of Physical Chemistry A ; Volume 117, Issue 38 , 2013 , Pages 9252-9258 ; 10895639 (ISSN) Shokri, A ; Ramezani, M ; Fattahi, A ; Kass, S. R ; Sharif University of Technology
    2013
    Abstract
    Like-charge ion pairing is commonly observed in protein structures and plays a significant role in biochemical processes. Density functional calculations combined with the conductor-like polarizable continuum model were employed to study the formation possibilities of doubly charged noncovalently linked complexes of a series of model compounds and amino acids in the gas phase and in solution. Hydrogen bond interactions were found to offset the Coulombic repulsion such that cation-cation clusters are minima on the potential energy surfaces and neither counterions nor solvent molecules are needed to hold them together. In the gas phase the dissociation energies are exothermic, and the... 

    The effect of ultraviolet lasers on conversion of methane into higher hydrocarbons

    , Article Laser and Particle Beams ; Volume 31, Issue 3 , 2013 , Pages 481-486 ; 02630346 (ISSN) Navid, H. A ; Irani, E ; Sadighi Bonabi, R ; Sharif University of Technology
    2013
    Abstract
    Conversion of CH4 molecule into higher hydrocarbons using two different wavelengths of 248 nm KrF laser and 355 nm of third harmonic of Nd:YAG laser is studied experimentally and theoretically. The stable products are analyzed and the effect of pressure on conversion of methane is measured. The detected reaction products are C2H2, C2H4, and C2H6. The conversion efficiency of 33.5% for 355 nm in comparison to 2.2% conversion for 248 nm for C2H2 is achieved. The potential of laser parameters as an important variable in controlling of final products is investigated  

    Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni, and Pd nanoparticles under ambient conditions

    , Article Journal of Physical Chemistry C ; Volume 115, Issue 14 , 2011 , Pages 6994-7001 ; 19327447 (ISSN) Reyhani, A ; Mortazavi, S. Z ; Mirershadi, S ; Moshfegh, A. Z ; Parvin, P ; Golikand, A. N ; Sharif University of Technology
    Abstract
    We report a study on hydrogen storage in Ca, Co, Fe, Ni, and Pd decorated multiwalled carbon nanotubes (MWCNTs) by using two techniques: volumetric and electrochemical. The results showed that hydrogen molecules are adsorbed on the defect sites and transported to the spaces between adjacent carbon via diffusion through both defect sites and opened tips into the layers. Hydrogen storage capacity can be improved in the decorated MWCNT by Co, Fe, Ni, and Ca metals in two approaches: (i) H2 adsorption via Kubas interaction and (ii) dissociation of H2 molecules on the metal particles. The results reveal that Pd are more effective catalyst for hydrogen storage process. It was found that...