Loading...
Search for: distributed-power-generation
0.006 seconds

    Possibilistic evaluation of distributed generations impacts on distribution networks

    , Article IEEE Transactions on Power Systems ; Volume 26, Issue 4 , 2011 , Pages 2293-2301 ; 08858950 (ISSN) Soroudi, A ; Ehsan, M ; Caire, R ; Hadjsaid, N ; Sharif University of Technology
    Abstract
    In deregulated power systems, the distribution network operator (DNO) is not responsible for investment in distributed generation (DG) units, and they are just concerned about the best architecture ensuring a good service quality to their customers. The investment and operating decisions related to DG units are then taken by entities other than DNO which are exposed to uncertainty. The DNO should be able to evaluate the technical effects of these uncertain decisions. This paper proposes a fuzzy evaluation tool for analyzing the effect of investment and operation of DG units on active losses and the ability of distribution network in load supply at presence of uncertainties. The considered... 

    Hybrid immune-genetic algorithm method for benefit maximisation of distribution network operators and distributed generation owners in a deregulated environment

    , Article IET Generation, Transmission and Distribution ; Volume 5, Issue 9 , 2011 , Pages 961-972 ; 17518687 (ISSN) Soroudi, A ; Ehsan, M ; Caire, R ; Hadjsaid, N ; Sharif University of Technology
    Abstract
    In deregulated power systems, distribution network operators (DNO) are responsible for maintaining the proper operation and efficiency of distribution networks. This is achieved traditionally through specific investments in network components. The event of distributed generation (DG) has introduced new challenges to these distribution networks. The role of DG units must be correctly assessed to optimise the overall operating and investment cost for the whole system. However, the distributed generation owners (DGOs) have different objective functions which might be contrary to the objectives of DNO. This study presents a long-term dynamic multi-objective model for planning of distribution... 

    Flux-based modeling of inductive shield-type high-temperature superconducting fault current limiter for power networks

    , Article IEEE Transactions on Applied Superconductivity ; Volume 21, Issue 4 , 2011 , Pages 3458-3464 ; 10518223 (ISSN) Hekmati, A ; Vakilian, M ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    Distributed power generation and the ever-growing load demand have caused fault current levels to exceed the nominal rating of the power system devices, and fault current limiters are more needed. Superconducting fault current limiter (SFCL) forms an important category of current limiters. In this paper, a novel flux-based model for the inductive shield-type high-temperature SFCL is developed based on the Bean model. This model is employed to simulate the SFCL performance in a sample circuit. Utilizing the model, the signal characterization of the limited current is determined. A prototype laboratory scale SFCL has been fabricated with superconducting rings. Yttrium barium copper oxide... 

    Control of microgrids: Aspects and prospects

    , Article 2011 International Conference on Networking, Sensing and Control, ICNSC 2011, 11 April 2011 through 13 April 2011 ; April , 2011 , Pages 38-43 ; 9781424495702 (ISBN) Dobakhshari, A. S ; Azizi, S ; Ranjbar, A. M ; Sharif University of Technology
    2011
    Abstract
    A microgrid is a controllable component of the smart grid defined as a part of distribution network capable of supplying its own local load even in the case of disconnection from the upstream network. Microgrids incorporate large amount of renewable and non-renewable distributed generation (DG) that are connected to the system either directly or by power electronics (PE) interface. The diversity of technologies used in DGs and loads, high penetration of DGs, economic operation of DGs, dynamics of low-inertia conventional DGs and PE interfaced inertialess DGs and smart operation by means of enhanced communication infrastructure have raised challenges in widespread utilization of microgrids as... 

    Optimal distributed generation placement in a restructured environment via a multi-objective optimization approach

    , Article 16th Electrical Power Distribution Conference, EPDC 2011, 19 April 2011 through 20 April 2011 ; April , 2011 , Page(s): 1 - 6 ; 9789644631498 (ISBN) Moeini Aghtaie, M ; Dehghanian, P ; Hosseini, S. H ; Sharif University of Technology
    2011
    Abstract
    The increasing use of electrical energy in nowadays modern societies and industries has brought about a sharp need for more efficient means of electricity generation. It seems rather logical to increase the electricity production proportional to the increasing rate of the demand. Distributed Generation (DG) has been recently accepted to be one of the most efficient means of electricity generation, particularly near to the load centers. The DG has been also considered in the generation expansion planning of power systems. In this paper, three main factors associated with the DGs placement procedure is scrutinized through a multi-objective optimization approach. One of the main factors... 

    Multivariable control strategy for autonomous operation of a converter-based distributed generation system

    , Article 2011 IEEE/PES Power Systems Conference and Exposition, PSCE 2011, 20 March 2011 through 23 March 2011, Phoenix, AZ ; March , 2011 , Page(s): 1 - 8 ; 9781612847870 (ISBN) Nejati, A ; Nobakhti, A ; Karimi, H ; Sharif University of Technology
    2011
    Abstract
    This paper presents a control strategy for the autonomous (islanded) operation of a distributed generation (DG) unit. The DG unit supplies a balanced load through a voitage-sourced converter (VSC). To maintain the autonomous operation in the islanded mode, the DG unit should provide its dedicated load with a sinusoidal voltage with a constant magnitude and a constant frequency. The dynamic model of the islanded DG system is represented by a set of nonlinear equations. Since the objective is to regulate voltage and frequency of the islanded DG about their rated values, the nonlinear model is linearized about the operating point. The obtained linearized model represents a multivariable LTI... 

    A possibilistic-probabilistic tool for evaluating the impact of stochastic renewable and controllable power generation on energy losses in distribution networks-A case study

    , Article Renewable and Sustainable Energy Reviews ; Volume 15, Issue 1 , 2011 , Pages 794-800 ; 13640321 (ISSN) Soroudi, A ; Ehsan, M ; Sharif University of Technology
    Abstract
    This paper proposes a hybrid possibilistic-probabilistic evaluation tool for analyzing the effect of uncertain power production of distributed generations (DGs) on active losses of distribution networks. The considered DG technologies are gas and wind turbines. This tool is useful for distribution network operators (DNOs) when they are faced with uncertainties which some of them can be modeled probabilistically and some of them are described possibilistically. The generation pattern of DG units changes the flow of lines and this will cause change of active losses which DNO is responsible for compensating it. This pattern is highly dependent on DG technology and also on decisions of DG... 

    Financial tools to manage dispatchable Distributed Generation economic risks

    , Article International Conference on Smart Energy Grid Engineering, SEGE 2015, 17 August 2015 through 19 August 2015 ; 2015 ; 9781467379328 (ISBN) Karimi, S. A ; Rajabi-Ghahnavieh, A ; Azad, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Distributed Generation (DG) has received increasing attention during the last decade. Advantage and constraints of DG application are well known to both DG owner and electric utility. Various technologies are available for DG units among them gas GenSet is, in particular, more attractive to the investors as the technology provides the control on DG generation. However, there are various financial risks associated with dispatchable DG units that prohibit wide private investment in such technologies. This paper examines the use of financial tools to manage dispatchable DG economic risks. A comprehensive framework has been proposed to consider various economic risks to DG owner. Suitable models... 

    Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    , Article International Journal of Control ; 2015 ; 00207179 (ISSN) Mahdian Dehkordi, N ; Namvar, M ; Karimi, H ; Piya, P ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters’ changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the... 

    Benefits of real-time monitoring to distribution systems: dynamic thermal rating

    , Article IEEE Transactions on Smart Grid ; Volume 6, Issue 4 , 2015 , Pages 2023-2031 ; 19493053 (ISSN) Safdarian, A ; Degefa, M. Z ; Fotuhi Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    With anticipated proliferation of electric vehicles and distributed generations in near future, dynamic thermal rating (DTR) as a tool for unlocking network capacities, is becoming critical for distribution network operators. DTR is gaining a great and still growing focus of attention in today's power industries. However, potential benefits of DTR, although have been envisioned to be significant, have not yet been studied quantitatively. This paper intends to comprehensively assess the potential impacts of DTR on the performance of a realistic Finnish distribution network. For doing so, first a step-by-step procedure is devised. Then, weather data and loading information of circuits in the... 

    Relay logic for islanding detection in active distribution systems

    , Article IET Generation, Transmission and Distribution ; Volume 9, Issue 12 , August , 2015 , Pages 1254-1263 ; 17518687 (ISSN) Vatani, M ; Amraee, T ; Ranjbar, A. M ; Mozafari, B ; Sharif University of Technology
    Institution of Engineering and Technology  2015
    Abstract
    This study presents a passive model to detect islanding conditions of synchronous distributed generation resources in a distribution network or a microgrid. The proposed approach uses the classification and regression tree algorithm for distinguishing between islanding and non-islanding situations. It utilises the rate of change of frequency (ROCOF) and harmonic content of the equivalent reactance seen at the location of distributed generation as input features for decision tree construction. Indeed the thresholds of the proposed input features are extracted by the decision tree algorithm. The output if-then rules of the decision tree algorithm are then utilised to make a new relay logic for... 

    Distributed generation placement for congestion management considering economic and financial issues

    , Article Electrical Engineering ; Volume 92, Issue 6 , November , 2010 , Pages 193-201 ; 09487921 (ISSN) Afkousi Paqaleh, M ; Abbaspour Tehrani Fard, A ; Rashidinejad, M ; Sharif University of Technology
    2010
    Abstract
    Congestion management is one of the most important functions of independent system operator (ISO) in the restructured power system. This paper presents two new methodologies for optimal sitting and sizing of distributed generations (DGs) in the restructured power systems for congestion management. The proposed methodologies are based upon locational marginal price (LMP) and congestion rent that forms a priority list of candidate buses to reduce the solution space. The proposed priority list facilitates the optimal placement as well as the level of output power of DGs. The proposed methods are implemented on the IEEE 14-bus and IEEE 57-bus test systems to illustrate their effectiveness. An... 

    Developing a multi-objective framework for planning studies of modern distribution networks

    , Article 2016 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2016 - Proceedings, 16 October 2016 through 20 October 2016 ; 2016 ; 9781509019700 (ISBN) Haji Seyed Olia, S. A ; Jooshaki, M ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This paper presents a new framework for planning studies of modern distribution networks. Presence of electric vehicles (EVs) and various technologies of distributed generation (DG) technologies are considered in the studies as two upcoming events of the future systems. In this regard, place and capacity of DG units along with the reinforcement of distribution lines are determined running a multi-objective (MO) optimization algorithm. Total losses of the distribution network along with annualized cost of expansion plans including investment, operation and maintenance costs are introduced as the main criteria which should be optimized in the proposed framework. An effective Posteriori... 

    A bi-level approach for optimal contract pricing of independent dispatchable DG units in distribution networks

    , Article International Transactions on Electrical Energy Systems ; Volume 26, Issue 8 , 2016 , Pages 1685-1704 ; 20507038 (ISSN) Sadeghi Mobarakeh, A ; Rajabi Ghahnavieh, A ; Haghighat, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    Distributed generation (DG) units are increasingly installed in the power systems. Distribution companies (DisCo) can opt to purchase the electricity from DG in an energy purchase contract to supply the customer demand and reduce energy loss. This paper proposes a framework for optimal contract pricing of independent dispatchable DG units considering competition among them. While DG units tend to increase their profit from the energy purchase contract, DisCo minimizes the demand supply cost. Multi-leader follower game theory concept is used to analyze the situation in which competing DG units offer the energy price to DisCo and DisCo determines the DG generation. A bi-level approach is used... 

    A novel hybrid islanding detection method for inverter-based DGs using SFS and rOCOF

    , Article IEEE Transactions on Power Delivery ; Volume 32, Issue 5 , 2017 , Pages 2162-2170 ; 08858977 (ISSN) Khodaparastan, M ; Vahedi, H ; Khazaeli, F ; Oraee, H ; Sharif University of Technology
    Abstract
    This paper is aimed at proposing a new hybrid method for the islanding detection of distributed-generation (DG) units. Hybrid method operation is based on the combination of an active and a passive method, for which the optimized Sandia frequency shift (SFS) method is used as the selected active method, and rate of change of frequency relay (ROCOF) is used as the passive method. In order to demonstrate the effectiveness of the proposed technique on islanding detection, several simulation studies based on IEEE 1547 and UL1741 anti-islanding test requirements are carried out. The evaluation of simulation results reveals that the control system, based on the proposed hybrid algorithm, meets the... 

    Stochastic energy management of microgrids during unscheduled islanding period

    , Article IEEE Transactions on Industrial Informatics ; Volume 13, Issue 3 , Volume 13, Issue 3 , 2017 , Pages 1079-1087 ; 15513203 (ISSN) Farzin, H ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Sharif University of Technology
    IEEE Computer Society  2017
    Abstract
    This paper deals with energy management of microgrids during unscheduled islanding events, initiated by disturbances in the main grid. In these situations, the main challenge is uncertainty about duration of disconnection from the main grid. In order to tackle this issue, a stochastic framework is proposed for optimal scheduling of microgrid resources over this period. The presented framework addresses the prevailing uncertainties of islanding duration as well as prediction errors of demand and renewable power generation. According to this framework, the probability distribution of islanding duration needs to be estimated, instead of predicting its exact value. The objective is to minimize... 

    A comprehensive digital protection scheme for low-voltage microgrids with inverter-based and conventional distributed generations

    , Article IEEE Transactions on Power Delivery ; Volume 32, Issue 1 , 2017 , Pages 441-452 ; 08858977 (ISSN) Zarei, S. F ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Microgrid (MG) protection is one of the main challenges in proliferation of microgrids. Due to limited fault current feeding of inverter-based distributed generations (DGs), in islanded operation of MG, protection problems become more complicated; and, therefore, conventional protection strategies cannot be applied. Hence, new protection methods that are applicable in islanded and grid-connected modes of operation are necessary. In this paper, a comprehensive digital-relay based protection is introduced for the protection of MGs. The proposed method includes protection of lines, distributed generations, and the point of common coupling. The structure and graphical schematic of the proposed... 

    Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    , Article International Journal of Control ; Volume 90, Issue 1 , 2017 , Pages 53-67 ; 00207179 (ISSN) Mahdian Dehkordi, N ; Namvar, M ; Karimi, H ; Piya, P ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters’ changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the... 

    A stochastic multi-objective framework for optimal scheduling of energy storage systems in microgrids

    , Article IEEE Transactions on Smart Grid ; Volume 8, Issue 1 , 2017 , Pages 117-127 ; 19493053 (ISSN) Farzin, H ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    This paper presents a stochastic framework for day-ahead scheduling of microgrid energy storage systems in the context of multi-objective (MO) optimization. Operation cost of microgrid in normal conditions and load curtailment index in case of unscheduled islanding events (initiated by disturbances in the main grid) are chosen as main criteria of the proposed scheme. In practice, duration of disconnection from the upstream network is unknown in unscheduled islanding incidents and cannot be predicted with certainty. To properly handle the uncertainties associated with time and duration of such events as well as microgrid load and renewable power generation, stochastic models are involved in... 

    Optimal DG placement and sizing based on MICP in radial distribution networks

    , Article IEEE Proceedings 2017 Smart Grid Conference, SGC 2017 ; Volume 2018-January , 2018 , Pages 1-6 ; 9781538642795 (ISBN) Mousavi, M ; Ranjbar, A. M ; Safdarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Electric distribution system is one of the most important parts of power systems owing to delivering electricity to consumers. The major amount of losses in a power system is in distribution level. Optimal distributed generation (DG) placement and sizing have a significant effect on power loss reduction in distribution systems. In this paper, a mixed integer conic programming (MICP) approach is presented to solve the problem of DG placement, sizing, and hourly generation with the aim of reducing power loss and costs in radial distribution systems. The costs include both investment and operational costs of DGs. Hourly load variations are considered in the model. To verify the effectiveness of...