Loading...
Search for: distribution-system
0.01 seconds
Total 298 records

    A risk-based resilient distribution system planning model against extreme weather events

    , Article IET Renewable Power Generation ; Volume 16, Issue 10 , 2022 , Pages 2125-2135 ; 17521416 (ISSN) Zare Bahramabadi, M ; Ehsan, M ; Farzin, H ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Due to the accelerated climate change, it is anticipated that the number and severity of natural disasters such as hurricanes, blizzards, and floods will be increased in the coming years. In this regard, this paper presents a distribution system planning model to improve the system resilience against hurricane. A scenario-based mathematical model is proposed to capture the random nature of weather events. Moreover, a stochastic optimization model is developed to simultaneously harden the distribution lines and place different types of distributed generation (DG) units such as microturbines (MTs), wind turbines (WTs), and photovoltaic cells (PVs). The conditional value at risk (CVaR) is used... 

    A resilience-based practical platform and novel index for rapid evaluation of urban water distribution network using hybrid simulation

    , Article Sustainable Cities and Society ; Volume 82 , 2022 ; 22106707 (ISSN) Ebrahimi, A. H ; Mortaheb, M. M ; Hassani, N ; Taghizadeh yazdi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This article proposes a novel index along with a user-friendly platform for resilience evaluation of the urban water distribution networks (WDN). WDN is of great importance in preserving the safety and sustainability of communities and cities. Resilience of a given system results in its sustainability. In recent years, many studies have focused on resilient urban WDN. However, these studies did not provide a comprehensive evaluation index and platform that could simultaneously consider hydraulic analysis, resilience parameters, and significant uncertainties. In this study, a novel resilience index was defined, and a user-friendly and practical platform (REWAT) was developed to calculate the... 

    Resiliency-oriented optimal siting and sizing of distributed energy resources in distribution systems

    , Article Electric Power Systems Research ; Volume 208 , 2022 ; 03787796 (ISSN) Gilasi, Y ; Hosseini, S. H ; Ranjbar, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Distribution systems are one of the most important infrastructures of each country which are exposed to numerous damages through unexpected events. The development of distributed energy resources (DERs) is one of the solutions which can bring several benefits to the operation and planning of distribution systems in both normal and event situations. This paper proposes a new multi-objective planning model for optimal siting and sizing of DERs in distribution systems to minimize the total planning costs including operation and active power loss costs, as the normal operation objective, and to minimize the expected prioritized load shedding exposed to an earthquake incident, as the resilience... 

    A Bi-Level framework for expansion planning in active power distribution networks

    , Article IEEE Transactions on Power Systems ; Volume 37, Issue 4 , 2022 , Pages 2639-2654 ; 08858950 (ISSN) Kabirifar, M ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Pourghaderi, N ; Dehghanian, P ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper presents a new framework for multistage expansion planning in active power distribution networks, in which the distribution system operator (DSO) considers active network management by clearing the local energy market at the distribution level. The proposed model is formulated as a bi-level optimization problem, where the upper level minimizes the net present value of the total costs imposed to DSO associated with the investment and maintenance of the network assets as well as the network operation, while the lower level on clearing the local energy market captures the participation of distributed energy resource (DER) owners and demand aggregators to maximize the social welfare.... 

    Optimal resilience-oriented microgrid formation considering failure probability of distribution feeders

    , Article Electric Power Systems Research ; Volume 209 , 2022 ; 03787796 (ISSN) Jahromi, S. N ; Hajipour, E ; Ehsan, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    After a natural disaster, there is an urgent need to supply critical loads such as hospitals as soon as possible. Microgrid (MG) formation is one of the quickest ways to achieve this goal. However, in MG formation studies, there is a trade-off between maximizing the amount of restored loads and minimizing their risk of interruption due to the following aftershocks. For the former objective, the minimum number of MGs should be formed, whereas, for the latter objective, the maximum number of MGs should be configured. This paper tackles this contradictory situation by considering the failure risk of distribution feeders in its proposed optimization framework. In this paper, at first, a novel... 

    Resource Management in a Distribution System with High-Penetration of Renewable Energies Considering Flexibility Concept

    , Ph.D. Dissertation Sharif University of Technology Fattaheian Dehkordi, Sajjad (Author) ; Abbaspour Tehrani Fard, Ali (Supervisor) ; Fotuhi Firuzabad, Mahmud (Co-Supervisor)
    Abstract
    Power distribution systems are experiencing restructuring owning to the increasing trend of integrating renewable energy sources as well as privatization in the network. In this regard, the dependence of power generation by renewable energy sources on meteorological characteristics would challenge the conventional procedures of operating the system. Respectively, while the expansion of renewable energy sources would facilitate supplying the demand loads locally; the issues associated with the uncertainty and variability of power generation by these units should be addressed in future operational schemes of distribution systems. This condition has resulted in the development of the... 

    A Blockchain Based System to Ensure Transparency and Originality in Supply Chain

    , M.Sc. Thesis Sharif University of Technology Ghomi Avili, Morteza (Author) ; Akhavan Niaki, Taghi (Supervisor)
    Abstract
    Emergence of crypto-currency and blockchain technology revolutionize supply chain processes. In addition, customer needs for more information on products or services from origin to destination, highlights the necessity of transparency, originality and traceability in supply chains. This research is aimed to develop a blockchain based system ascertaining supply chain transparency and originality. To this aim, a joint pricing and closed-loop supply chain network design problem is selected as a good platform to implement it. Due to increasing concerns on environmental issues and maximizing job opportunities, sustainability is also considered in the proposed problem. To ascertain transparency... 

    Distributed Encoding System in the Presence of Adversarial Sources

    , Ph.D. Dissertation Sharif University of Technology Abadi Khooshemehr, Nastaran (Author) ; Maddah Ali, Mohammad Ali (Supervisor)
    Abstract
    In communications systems, coding is used to combat channel errors. The redundancy introduced by coding enables the detection and/or correction of errors occurring in the channel. In addition to communications systems, coding is also beneficial in various other systems such as distributed storage systems and blockchain systems to cope with node failures, data erasures, and adversarial behaviors attempting to modify information. In existing applications of coding, it is generally assumed that the encoding operation is performed correctly and without errors, and errors are applied to the encoded data. In recent years, applications have emerged where the assumption of error-free encoding is not... 

    Tie-line planning for resilience enhancement in unbalanced distribution networks

    , Article IET Generation, Transmission and Distribution ; Volume 16, Issue 5 , 2022 , Pages 1030-1046 ; 17518687 (ISSN) Taheri, B ; Safdarian, A ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Over the past decades, there has been a dramatic increase in the frequency of natural disasters, which are the leading causes of large-scale power outages. This paper, therefore, assesses the significance and role of optimal tie-line construction in improving the service restoration performance of unbalanced power distribution systems in the aftermath of high-impact low-probability incidents. In doing so, a restoration process aware stochastic mixed-integer linear programming model is developed to find the optimal locations for new tie-line construction in unbalanced three-phase distribution systems. In particular, the restoration process of distribution systems, including the fault... 

    A stochastic framework for optimal island formation during two-phase natural disasters

    , Article IEEE Systems Journal ; Volume 16, Issue 2 , 2022 , Pages 2090-2101 ; 19328184 (ISSN) Bahrami, M ; Vakilian, M ; Farzin, H ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This article proposes a new three-stage stochastic framework for dealing with predictable two-phase natural disasters in distribution systems. This framework is a multiobjective optimization, in which the amount of curtailed energy, the number of switching actions, and the vulnerability of operational components are selected as the main criteria for decision-making process. The optimization problem is formulated in the form of a stochastic mixed-integer linear programming (MILP) problem. In this article, a windstorm event followed by flooding is analyzed as a two-phase natural disaster. In this regard, the uncertainties associated with gust-wind speed, floodwater depths, and load demands are... 

    Energy Management in Smart Manufacturing Based on AI Methods

    , M.Sc. Thesis Sharif University of Technology Moshiri, Abdollah (Author) ; Hemmatyar, Ali Mohammad Afshin (Supervisor)
    Abstract
    Focusing on developing the EEPS (Energy Electric and Power System) based on the SG (Smart Grid) infrastructure to achieve implementation of EI (Energy Internet) ultimately, in order to analyze and manage the energy/power consumption, requires a robust embedded EMS (Energy Management System) to implement real-time LF (Load Forecasting), prevent the power waste and realize consumption management which eventually leads toward the smart industries/buildings. STLF (Short Term Load Forecasting) is an essential component that an industrial plant requires to manage the power, regarding the load fluctuations during production, and compulsory requirement of cost mitigation. This thesis, in order to... 

    Robust coordinated distribution system planning considering transactive DSO's market

    , Article IEEE Transactions on Power Systems ; 2022 , Pages 1-11 ; 08858950 (ISSN) Kabiri-Renani, Y ; Fotuhi Firuzabad, M ; Shahidehpour, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this paper, a robust distribution system expansion planning (DSP) approach is presented to supply the load growth locally and move toward nearly zero energy local distribution areas (LDAs). In the proposed approach, a distribution system operator (DSO) is responsible for secure and optimum operation of LDAs. Therefore, investors on distribution system upgrades use this approach to maximize the profit on investments by determining the installation year of new distribution feeders and energy resources, distributed energy resource (DER) placements and sizes considered by corresponding DSOs. The accurate AC power flow solution is used and mathematical methods are developed to model the DSP as... 

    A Robust MPC method for post-disaster distribution system reconfiguration based on repair crew routing

    , Article 17th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2022, 12 June 2022 through 15 June 2022 ; 2022 ; 9781665412117 (ISBN) Arjomandi-Nezhad, A ; Fotuhi Firuzabad, M ; Mazaheri, H ; Lehtonen, M ; Moeini Aghtaie, M ; Peyghami, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Distribution system reconfiguration is an effective solution to reduce the consequences of a disaster through transferring loads to another feeder via automatic switches. Meanwhile, an optimal sequence of damage components repairments provides the operator with the opportunity to utilize components that play a critical role in restoring loads sooner. Motivated by the rise in penetration of renewable distributed generators in modern distribution systems, this paper aims to develop a robust reconfiguration and crew routing co-optimization method to cope with renewable and demand uncertainties while recovering from a disaster. The method optimizes the grid recovery process for the worst... 

    An Milp model for switch, DG, and tie line placement to improve distribution grid reliability

    , Article IEEE Systems Journal ; 2022 , Pages 1-12 ; 19328184 (ISSN) Zare Bahramabadi, M ; Ehsan, M ; Farzin, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Remote controlled switches (RCSs) have the ability to isolate the faulted area from other parts of the distribution system. On the other hand, the dispatchable distributed generators (DDGs) and tie lines can supply the interrupted loads after fault occurrence trough microgrids and reduce the outage time. In this regard, this article proposes a planning model for simultaneous placement of RCSs, DDGs, and tie lines to improve distribution system reliability. The presence of renewable distributed generations (RDGs) and energy storage systems, which have an increasing penetration in today's distribution networks are also considered. Moreover, two different practical load shedding methods are... 

    A novel pre-storm island formation framework to improve distribution system resilience considering tree-caused failures

    , Article IEEE Access ; Volume 10 , 2022 , Pages 60707-60724 ; 21693536 (ISSN) Bahrami, M ; Vakilian, M ; Farzin, H ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper presents a new framework for island formation prior to windstorms, which considers tree-caused failures of distribution networks. In the proposed framework, both direct and indirect effects of windstorms on distribution lines are quantified. Thus, a novel discrete Markov chain model is proposed for representing the failure modes of trees in each time interval of windstorm duration. This model categorizes 'healthy', 'uprooted', 'stem breakage', and 'branch breakage' states of a tree. In addition, a new line-tree interaction model is presented for calculating tree-caused failure probability of overhead lines. The results of the proposed Markov model are taken as inputs by the... 

    Dynamic control of supported macro/micro-tubes conveying magnetic fluid utilizing intelligibly designed axially functionally graded materials

    , Article International Journal of Computer Integrated Manufacturing ; Volume 35, Issue 4-5 , 2022 , Pages 345-358 ; 0951192X (ISSN) Du, J ; Mirtalebi, S. H ; Ahmadian, M.T ; Cao, Y ; Suhatril, M ; Assilzadeh, H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this study, dynamic modeling of an elbow axially functionally graded (AFG) macro/micro-tube carrying magnetic flow with different cross-sections is considered. Parametric optimization is performed for vibration suppression of such fluid-interaction systems. Implementing computer simulations, passive vibration control procedures, along with the effect of AFG materials and magnetic properties of the fluid as well as precisely manufactured geometry of the system, is investigated. It is assumed that the material characteristics of the system vary in the longitudinal direction based on exponential and power-law distribution profiles. Influence of the downstream inclination angle and... 

    Budget-constrained drone allocation for distribution system damage assessment

    , Article IET Smart Grid ; Volume 5, Issue 1 , 2022 , Pages 42-50 ; 25152947 (ISSN) Arjomandi Nezhad, A ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Aminifar, F ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Natural disasters threaten the sustainability of electric power supply. This fact highlights the importance of enhancing technological resourcefulness to handle the upcoming events. Once a natural disaster occurs, the most urgent undertaking is to rapidly pinpoint and assess component damages and dispatch the repair crews towards the most critical impaired elements. Practical efforts confirm that utilising a drone, which is an unmanned aerial vehicle, can notably reduce the duration of post-disaster distribution system damage assessment (DA) and increase the resilience of power systems. This study presents an optimisation model to determine the optimal number and type of drones required for... 

    Identification Of Surrogate Models for Hybrid Distributed Parameters Systems Using Machine Learning Algorithms

    , M.Sc. Thesis Sharif University of Technology Taghizadeh, Mohammad Javad (Author) ; Bozorgmehry Boozarjomehry, Ramin (Supervisor)
    Abstract
    In various industries, particularly in the process industries, computational fluid dynamics (CFD) stands as the predominant method for simulating distributed systems. In these methods, discretization of system geometry and partial differential equations is necessary, resulting in a system of algebraic or ordinary differential equations, or a combination thereof. The significant computational demands arising from the extensive number of equations derived from dynamic system simulations highlight the necessity for substantial processing and computing power. The objective of this project is to reduce the computational load associated with solving these equations. It focuses on utilizing machine...