Loading...
Search for: dna
0.004 seconds
Total 173 records

    Exact Simulation of Varian Clinac 2100C/D with Use of Phase Space file and Representation of Appropriate Source Model for Clinical Applications

    , Ph.D. Dissertation Sharif University of Technology Ezzati, Ahadollah (Author) ; Sohrabpour, Mostafa (Supervisor) ; Rabi Mahdavi, Saeed (Co-Advisor)
    Abstract
    MC Simulation is considered to be one of the most accurate methods for transport of radiation in various media. Computational speed is the limiting factor to apply the MC method in clinical settings. One of the methods to increase the speed in MC simulations is the use of phase space file (PSF). PSF is generated by transporting the particles through the linear accelerator head. The characteristics of these particles crossing a reference plane are stored in the PSF file. The PSF can be used in subsequent simulations as a radiation source. The use of PSF is effective but has a drawback of having latent variance. Latent variance is a problem inherent in using phase space files. Latent variance... 

    Designing and Fabrication of Microfluidic Biosensor by DNA-Directed Immobilization

    , Ph.D. Dissertation Sharif University of Technology Esmaeili, Elaheh (Author) ; Vossoughi, Manouchehr (Supervisor) ; Soleimani, Masoud (Supervisor) ; Shamloo, Amir (Supervisor)
    Abstract
    The present study is aimed at the development of a novel approach based on the magnetically improvement of DNA-directed immobilization to prepare a highly efficient sensor for prostate diagnosis. The novelty of this work is in the use of antibody conjugated magnetic nanoparticles via DDI. DNA-modified magnetic nanoparticles are added in solution to capture DNA-conjugated, fluorescently-labeled immunocomplexes formed in solution free of steric constraints. The DDI-based nanoconstructs are then concentrated and immobilized using a magnetic field. Compared to a process in which the immunocomplex directly forms on the sensing surface, the proposed approach provides higher mass transfer and lower... 

    Design and Implementation of DNA Pattern Recognition Algorithm Utilizing Optical Coding Method

    , M.Sc. Thesis Sharif University of Technology Maleki, Ehsan (Author) ; Koohi, Somayyeh (Supervisor) ; Kavehvash, Zahra (Supervisor)
    Abstract
    In this research, two novel optical methods have been proposed for DNA local sequence alignment. The proposed methods benefit from algorithms and methods in computer field and ability of parallelism in optical wave to achieve a low-cost process and propose an easy understanding output in DNA local sequence alignment procedure. The first method is built upon moiré matching technique which is extended by proposed HAPPOC scheme using amplitude, phase, and polarization of optical wave. For analyzing the extended moiré output, a novel 3D Artificial Neural Network is designed and developed by optical structure. The second structure, as named HAWPOD method, is based on DV-Curve method. The HAWPOD... 

    Design & Analysis of a DNA String Matching System Based on Optical Parallel Processing

    , M.Sc. Thesis Sharif University of Technology Babashah, Hossein (Author) ; Kavehvash, Zahra (Supervisor) ; Koohi, Somaie (Co-Advisor) ; Khavasi, Amin (Co-Advisor)
    Abstract
    In recent years, the biological evolution of molecular detection capabilities based on gene analysis has provided a reliable performance in the diagnosis of a disease before a symptom emerges. Human gene storage requires a large amount of computer memory (about 1.5 GB for each DNA) and the search for a specific pattern within it with electronic computers is time and power consuming. Optical computing uses light parallel processing capabilities to find the pattern in a digital field, which can be used to process large volumes of data in short time and low power consumption, while electronic computers process data in series with high power dissipation. According to the Optalysys report, the... 

    A Study of Quantum Information Transfer from DNA to Protein

    , M.Sc. Thesis Sharif University of Technology Esalat, Asiyeh (Author) ; Shafiee, Afshin (Supervisor)
    Abstract
    New biological discussions in quantum mechanics that has grown considerably in the past decade. Meanwhile, considering some of interesting problems in biology and chemistry, the use of quantum approach superposition principle and tunneling effect explain some of the phenomena of life more than several. Nowadays, regarding quantum description, provided to explain how we recognize different odors, what the mechanism photosynthesis is, and how bind navigation occurs. Furthermore, the new field of quantum biology sheds light in underestanding the issue of heritance and genetics inforamtion. In this thesis, after reviewing some interesting topics of quantum biology, the data transfer from... 

    Equilibrium States of Nano scaled DNA-loops in Different Elastic Models

    , M.Sc. Thesis Sharif University of Technology Salari, Hossein (Author) ; Ejtehadi, Mohammad Reza (Supervisor)
    Abstract
    DNA cyclization mechanism, has an important role in many biological processes such as gene regulation, DNA replication and recombination. In addition there are DNA-loops in Bacteria an around the Histones in Chromosomes in scale of 5-100 nm. We need to a appropriate model to study about bending and loop formationin in this important molecule which is able to describe elasticity properties of DNA.One of the most successful models, to describe the physical behaviour of a long DNA molecule, is the elastic rod model. In this model, DNA is considered as a  ixable rod that its bending energy is isotropic. Asymmetric elastic rod model is another model to describe elasticity properties of DNA.... 

    Asymmetric elastic rod model for DNA

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 80, Issue 1 , 2009 ; 15393755 (ISSN) Eslami Mossallam, B ; Ejtehadi, M. R ; Sharif University of Technology
    2009
    Abstract
    In this paper we consider the anharmonic corrections to the anisotropic elastic rod model for DNA. Our model accounts for the difference between the bending energies of positive and negative rolls, which comes from the asymmetric structure of the DNA molecule. We will show that the model can explain the high flexibility of DNA at small length scales, as well as kink formation at high deformation limit. © 2009 The American Physical Society  

    Fabrication of metal nanowires based on self assembly of tryptophan-capped gold nanoparticle onto DNA network template

    , Article International Journal of Nanotechnology ; Volume 6, Issue 10-11 , 2009 , Pages 1041-1049 ; 14757435 (ISSN) Sheikholeslami, Z ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    2009
    Abstract
    In this study, synthesis of conductive metal nanowires by using aligned and immobilised DNA strand on solid substrate is reported. The nanoporous gold film was prepared by electrostatic self assembly of gold nanoparticles capped with tryptophan. Tryptophan would improve surface properties of gold nanoparticles for strongly attaching to DNA. Fourier transform infrared (FTIR) spectroscopy confirmed that gold nanoparticles have been capped by tryptophan. Also measured zeta potential shows that there are positive charges on the surface of gold nanoparticles. Investigations by AFM observati on substantially confirm that tryptophan-capped gold nanoparticles can be bonded to DNA template... 

    Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 22 , 2009 , Pages 9573-9580 ; 19327447 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Sharif University of Technology
    2009
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPION) are being increasingly used in various biomedical applications such as hyperthermia, cell and protein separation, enhancing resolution of magnetic resonance imaging, and drug delivery. However, the toxicity data for SPION are limited. In this study, uncoated and single polyvinyl alcohol coated SPION with high chemical reactivity (due to the bigger surface area) were synthesized using a coprecipitation method. Cytotoxicity of these magnetic nanoparticles and their ability to cause arrest in cell life-cycles was investigated. Interaction of these nanoparticles with adhesive mouse fibroblast cell line (L929) was probed using MTT assay. High... 

    Design, Simulation and Construction of a Rapid Gene Amplification Microfluidic Device Using Polymerase Chain Reaction (PCR) Method

    , M.Sc. Thesis Sharif University of Technology Amadeh, Ali (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    Polymerase chain reaction method is a conventional method for obtaining multiple copies of a specified segment in the DNA molecule and to amplify the DNA molecule itself. Therefore, this method has been of paramount importance in different fields of research and has been applied for different applications. PCR requires thermal cycling, or repeated temperature changes between two or three discrete temperatures to amplify specific nucleic acid target sequences. To achieve such thermal cycling, conventional bench-top thermal cyclers generally use a metal heating block powered by Peltier elements or benefit from forced convection heat transfer. Although efforts have been made in order to reduce... 

    Design and Development of Electrochemical DNA Nanobiosensors for Identification and Determination of Important Biomarkers

    , Ph.D. Dissertation Sharif University of Technology Salimian, Razieh (Author) ; Shahrokhian, Saeed (Supervisor) ; Kalhor, Hamid Reza (Co-Supervisor)
    Abstract
    The main purpose of this Ph.D. Thesis is to develop DNA-based biosensors using Label-free approaches applying simple, inexpensive and fast electrochemical techniques to measure the biological markers of cancer.In the first part, a simple protocol for detection of specific-sequence DNA is introduced. In this method carbon nanotube is used as a hybridization indicator. This label-free system provides the advantage of eliminating additional labeling procedure. As the signal enhances in the presence of MWCNT and decreases in the presence of target, the fabricated sensor is known as a signal-off device. The oxidation signal of Fe(CN)63-/4- is followed as an analytical signal to detect target... 

    , Ph.D. Dissertation Sharif University of Technology Saberi, Reyhanesadat (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part, preparation of different kinds of polypyrrole/carbon composites and their application for drug analysis are described. In the first work, A very sensitive electrochemical sensor constructed from a glassy carbon electrode modified with a layer-by-layer MWCNT/doped overoxidized polypyrrole (oppy/MWCNT /GCE) was used for the determination of acetaminophen (AC) in the presence of codeine and ascorbic acid (AA). In comparison to the bare glassy carbon electrode, a considerable shift in the peak potential together with an increase in the peak current was observed for AC on the surface of oppy/MWCNT/GCE, which can be related to the enlarged microscopic surface area of the... 

    Design and Fabrication of a Centrifugal Microfluidic System to DNA Extraction

    , M.Sc. Thesis Sharif University of Technology Fathi Ganje Lou, Ali (Author) ; Farhadi, Fathollah (Supervisor) ; Saadatmand, Maryam (Supervisor) ; Parsa Yeganeh, Laleh (Co-Supervisor)
    Abstract
    Deoxyribonucleic acid (DNA) extraction, as one of the most important steps in modern molecular diagnostics, is the process by which DNA is separated from intracellular materials like proteins, membranes, and other materials contained in the cell. Microfluidic technology enables sophisticated, time-consuming and costly experiments with minimal use of raw materials, time and cost and acceptable accuracy. The predominant advantages of centrifugal microfluidic systems are utilizing centrifugal force to generate propulsion without the need for a pump, and eliminating the need for experts to run the system. Various fluidic operations such as valving, mixing, metering, heating, and sample... 

    Bottom-up synthesis of nitrogen and oxygen co-decorated carbon quantum dots with enhanced DNA plasmid expression

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 184 , 2019 ; 09277765 (ISSN) Yadegari, A ; Khezri, J ; Esfandiari, S ; Mahdavi, H ; Karkhane, A. A ; Rahighi, R ; Heidarimoghadam, R ; Tayebi, L ; Hashemi, E ; Farmany, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this paper, a bottom-up hydrothermal route is reported for the synthesis of oxygen and nitrogen co-decorated carbon quantum dots (CQDs) using ammonium hydrogen citrate (AHC) as a single precursor. DLS data approved the formation of 4.0 nm (average size) CQDs. XRD pattern shows the interlayer spacing (002) of 3.5 Å for CQDs, which is exactly the same as that of crystalline graphite. XPS and FTIR spectra verified the formation of oxygen and nitrogen functional groups on the CQDs surface. Co-decorated carboxyl, hydroxyl and amine groups on the CQDs surfaces make them as promising polyelectrolyte for gene delivery. Toxicity assay showed a survival rate of 70% under different incubation times... 

    A quantum mechanical approach towards the calculation of transition probabilities between DNA codons

    , Article BioSystems ; Volume 184 , 2019 ; 03032647 (ISSN) Ghasemi, F ; Shafiee, A ; Sharif University of Technology
    Elsevier Ireland Ltd  2019
    Abstract
    The role of quantum tunneling in altering the structure of nucleotides to each other and causing a mutational event in DNA has been a topic of debate for years. Here, we introduce a new quantum mechanical approach for analyzing a typical point-mutation in DNA strands. Assuming each codon as a base state, a superposition of codon states could provide a physical description for a set of codons encoding the same amino acid and there are transition amplitudes between them. We choose the amino acids Phe and Ile as our understudy bio-systems which are encoded by two and three codons, respectively. We treat them as large quantum systems and use double- and triple-well potential models to study the... 

    The highly sensitive impedimetric biosensor in label free approach for hepatitis B virus DNA detection based on tellurium doped ZnO nanowires

    , Article Applied Physics A: Materials Science and Processing ; Volume 125, Issue 9 , 2019 ; 09478396 (ISSN) Khosravi Nejad, F ; Teimouri, M ; Jafari Marandi, S ; Shariati, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The highly sensitive impedimetric biosensor in label free approach for hepatitis B virus DNA (HPV DNA) detection based on tellurium doped ZnO nanowires was fabricated. The NWs were grown by hybrid thin film oxidation in the physical vapor deposition (PVD) mechanism. The morphology characterization of the synthesized NWs was performed by field emission scanning electron microscopy (FESEM) and the images demonstrated that the diameter and the length of the materialized NWs were around 50 nm and several micrometers, respectively. The high-resolution transmission electron microscopy (HRTEM) image indicated that the fabricated NWs were crystalline and their phase characterization was validated by... 

    Genome-wide DNA methylation profiling in ectopic and eutopic of endometrial tissues

    , Article Journal of Assisted Reproduction and Genetics ; Volume 36, Issue 8 , 2019 , Pages 1743-1752 ; 10580468 (ISSN) Barjaste, N ; Shahhoseini, M ; Afsharian, P ; Sharifi Zarchi, A ; Masoudi Nejad, A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Purpose: Endometriosis is a gynecological disease that causes the uterine lining to appear in other organs outside the uterus. As DNA methylation has an important role in this disorder, its profiling can reveal new information to improve the diagnosis and treatment of endometriosis patients. Methods: We conducted a genome-wide methylation profiling of ectopic and eutopic endometrial tissues from women with and without endometriosis using Infinium Human Methylation 450K BeadChip arrays. DNA methylation samples were collected from nine ectopic and nine eutopic endometrial tissues of endometriosis and six endometrial tissues of healthy controls. Results: Correlation heatmaps and the principal... 

    Private shotgun and sequencing

    , Article 2019 IEEE International Symposium on Information Theory, ISIT 2019, 7 July 2019 through 12 July 2019 ; Volume 2019-July , 2019 , Pages 171-175 ; 21578095 (ISSN); 9781538692912 (ISBN) Gholami, A ; Maddah Ali, M. A ; Abolfazl Motahari, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Current techniques in sequencing a genome allow a service provider (e.g. a sequencing company) to have full access to the genome information, and thus the privacy of individuals regarding their lifetime secret is violated. In this paper, we introduce the problem of private DNA sequencing, where the goal is to keep the DNA sequence private to the sequencer. We propose an architecture, where the task of reading fragments of DNA and the task of DNA assembly are separated, the former is done at the sequencer(s), and the later is completed at a local trusted data collector. To satisfy the privacy constraint at the sequencer and reconstruction condition at the data collector, we create an... 

    Calculation of Quantum Transition Probabilities between Codons and Concept of Biological Information

    , Ph.D. Dissertation Sharif University of Technology Ghasemi, Fatemeh (Author) ; Shafiee, Afshin (Supervisor)
    Abstract
    It has been about a century since the introduction of the theory of quantum mechanics. This theory is a branch of physics that describes the behavior of nature in very small scales and microscopic systems . Since no quantum system is entirely isolated from its surroundings , it is necessary to study their interactions with the environment to understand them accurately. The theory of open quantum systems provides the theoretical and conceptual framework needed to consider these interactions. Then using the appropriate quantum operations , the evolution of the combined system can be investigated. Moreover , considering the environmental effects, some quantum features such as dissipation... 

    Metabolomics analysis of the saliva in patients with chronic hepatitis b using nuclear magnetic resonance: A pilot study

    , Article Iranian Journal of Basic Medical Sciences ; Volume 22, Issue 9 , 2019 , Pages 1044-1049 ; 20083866 (ISSN) Gilany, K ; Mohamadkhani, A ; Chashmniam, S ; Shahnazari, P ; Amini, M ; Arjmand, B ; Malekzadeh, R ; Nobakht Motlagh Ghoochani, B. F ; Sharif University of Technology
    Mashhad University of Medical Sciences  2019
    Abstract
    Objective(s): Hepatitis B virus infection causes chronic disease such as cirrhosis and hepatocellular carcinoma. The metabolomics investigations have been demonstrated to be related to pathophysiologic mechanisms in many disorders such as hepatitis B infection. The aim of this study was to investigate the saliva metabolic profile of patients with chronic hepatitis B infection and to identify underlying mechanisms as well as potential biomarkers associated with the disease. Materials and Methods: Saliva from 16 healthy subjects and 20 patients with chronic hepatitis B virus were analyzed by nuclear magnetic resonance (NMR). Then, multivariate statistical analysis was performed to identify...