Loading...
Search for: drops
0.012 seconds
Total 421 records

    Hydraulic Evaluation and Pressure Estimation in Two-Phase Air-Water Slug Flow Using Soft Computing

    , M.Sc. Thesis Sharif University of Technology Akbarian, Hadi (Author) ; Borghei, Shamsai (Supervisor) ; Shamsaee, Abolfazl (Co-Advisor)
    Abstract
    Study of hydraulic characteristics of two-phase flow is one of the important issues in hydraulic engineering. Two-phase flows usually accur in hydraulic structures such as pressurized flow tunnels, culverts, sewer pipes, junctions, and similar conduits. Under certain conditions, air may also be introduced into pressurized intake systems, which may form large bubbles in portions of the pipe. The bubbles may, in turn, cause an unstable slug flow, or other flow patterns. Slug flow is one of the most probable patterns in these flows. Prediction of pressure in this situation is a complex subject which despite its great importance is rarely discussed. In this study, the results of a laboratory... 

    Evaluation of the Hydrodynamic Performance of A Special Submarine Rescue System

    , M.Sc. Thesis Sharif University of Technology Mohammadpour, Mojtaba (Author) ; Abbaspour, Madjid (Supervisor)
    Abstract
    The increasing growth of marine tourism has strengthened the activities related to this industry. One of the most profitable of these activities is recreational submarines. A traction recreational submarine is an idea in this field, in order to reduce costs, the propulsion force is removed and the submarine is towed by the mother ship. The most important reason for using the traction system and removing the independent drive is to prevent vibration and noise caused by the rotation of the propeller to prevent the escape of aquatic animals and to create a beautiful view from under the sea to watch underwater wonders. Searching for safety and saving people's lives in emergency situations is an... 

    Effect of Blade fin on Pressure Drop and Heat Transfer in Microchannels

    , M.Sc. Thesis Sharif University of Technology Beheshti, Alireza (Author) ; Nouri Borujerdi, Ali (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Nowadays, the cooling of electronic equipment has become a challenge for designers and scientists due to their progress. One of the most effective solutions for cooling these devices is using microchannel heat sinks. Researchers conducted so many studies experimentally, numerically, or a combination of them to increase the efficiency of microchannel heat sinks. Several methods have been proposed in previous studies to improve the cooling performance, such as using fins, nanoparticles, porous material, etc. Although increasing the heat exchange surface by using fins is caused to increase heat transfer, it also causes an increase in pressure drop. For this reason, researchers are looking for... 

    Design and Development of Non-Newtonian Droplet-based Logic Microfluidics Using Passive Method

    , Ph.D. Dissertation Sharif University of Technology Asghari, Elmira (Author) ; Moosavi, Ali (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Droplet-based microfluidic logic gates have many applications in diagnostic tests and biosciences due to their automation and cascading ability. Although most biological fluids, such as blood, exhibit non-Newtonian properties, all previous studies in this field have been with Newtonian fluids. Additionally, none of the previous work has studied the functional area of logic gates. In the present work, AND-OR logic gate with power-law fluid is considered. The effect of important parameters such as non-Newtonian fluid properties, droplet length, capillary number, and geometrical properties of the microfluidic system on the operating region of the system has been investigated. The results show... 

    Development of Black-Box Model and Fault Tolerant Control of Polymer Electrolyte Membrane Fuel Cell Based on Experimental Data

    , Ph.D. Dissertation Sharif University of Technology Khanafari, Ali (Author) ; Alasty, Aria (Supervisor) ; Kermani, Mohammad Jafar (Supervisor) ; Asghari, Saeed (Co-Supervisor)
    Abstract
    Today, the world is facing the limited resources of fossil fuels and the pollution caused by them. One of the best alternatives that can be offered to fossil fuels is the use of hydrogen in fuel cell technology. Polymer electrolyte membrane fuel cell is one of the types of fuel cell that has a significant advantage over other types of fuel cell in terms of low working temperature and high performance speed. In order to become more widespread, the fuel cell must be freed from the two problems of uncertainty and short life. These two factors can be improved by using a condition monitoring system in both stationary and transportation applications. By using continuous status monitoring and error... 

    Dynamics and Heat transfer of Two-phase Non-Newtonian Fluids in Superhydrophobic Channels

    , M.Sc. Thesis Sharif University of Technology Shahsavari, Arghavan (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    When the fluid passes through the microchannel, some energy is lost due to drag force and pressure drop. One of the methods used in the last few decades to optimize energy consumption is creating superhydrophobic surfaces in microchannels. These surfaces, with their features such as increasing the contact angle and reducing the contact angle hysteresis, can reduce energy loss, which is due to the presence of unevenness on the surface, and by trapping air and creating a two-phase flow, they reduce the drag force. On the other hand, the air trapped inside these irregularities will also affect the heat transfer of the passing fluid in the microchannel, which by creating resistance in the... 

    Investigating the Fracture Behavior of Adhesive Joints at Different Strain Rates and under Drop

    , M.Sc. Thesis Sharif University of Technology Darvishi, Irana (Author) ; Nourani, Amir (Supervisor)
    Abstract
    Nowadays adhesives with the development of technology and the numerous benefits they have, are becoming a replacement for traditional joining methods in industries like electronics, automotive, aerospace, and naval. That’s why the need for studying the fracture behavior of adhesive joints becomes vital. So far, many engineers and designers are trying to investigate the behavior of adhesive joints in different conditions that these joints actually deal with. Also, finding solutions to predict the behavior of adhesive joints is the researchers’ other concern. The purpose of this research is to find the effect of factors that are less focused in the literature, on the fracture of adhesive... 

    Investigating the Fracture Behavior of Adhesive Joints at Different Strain Rates and Under Drop

    , M.Sc. Thesis Sharif University of Technology Darvishi, Irana (Author) ; Nourani, Amir (Supervisor)
    Abstract
    Nowadays adhesives with the development of technology and the numerous benefits they have, are becoming a replacement for traditional joining methods in industries like electronics, automotive, aerospace, and naval. That’s why the need for studying the fracture behavior of adhesive joints becomes vital. So far, many engineers and designers are trying to investigate the behavior of adhesive joints in different conditions that these joints actually deal with. Also, finding solutions to predict the behavior of adhesive joints is the researchers’ other concern. The purpose of this research is to find the effect of factors that are less focused in the literature, on the fracture of adhesive... 

    Experimental Investigation of the Porous Media Permeability Effect on Heat Transfer and Pressure Drop in Internal of Tube

    , M.Sc. Thesis Sharif University of Technology Salimi, Milad (Author) ; Nouri Broujerdi, Ali (Supervisor)
    Abstract
    The purpose of this study is investigation of the effect of the porous medium permeability on heat transfer and pressure drop inside tube and compare the results with non-porous tube. In order to create porous medium in this research iron bullets with 2.93, 4.74 and 6.97 (mm) diameters has been used in test tube. Test tube made of copper with an inner diameter of 2 cm and has 1meter length. This experiment is done in steady state, transient and turbulent flow regime (2600< <12260) and also for constant heat flux boundary condition . The experimental results show that the values of heat transfer and pressure drop of porous pipe is always greater than non-porous pipe and these values will... 

    Experimental Investigation of Convective Heat Transfer and Pressure Loss in a Circular Tube With Suspeded Ball Turbulators

    , M.Sc. Thesis Sharif University of Technology Aghli ChanCheh, Alireza (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Flow turbulators have crucial importance in heat transfer and energy harvesting applications. Therefore, in this study, the thermo-hydraulic and vibrational behavior of the floe inside a circular tube with vibrational ball turbulators (VBTs) on an axial elastic wire is experimentally studied for the first time. In this novel design, the elastic wire facilitates turbulence by allowing VBTs to move transversally and rotationally and agitate the flow substantially. The effects of diameter and longitudinal distance (pitch) ratios of VBTs, the Reynolds number, and the axial tension of the wire, on the flow friction factor (f), the Nusselt number (Nu), the thermal performance factor (η), in... 

    Numerical and Experimental Study of the Effects of Surfactant on Droplet Motion and Deformation

    , Ph.D. Dissertation Sharif University of Technology Salehi, Moloud Sadat (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein (Supervisor)
    Abstract
    Surface Active Agents/surfactant have a strong tendency to adsorb at the interface between two immiscible fluids, due to the existence of hydrophobic portions in their molecules’ structure. Accumulation of these molecules on the liquid interface changes the intermolecular forces and causes the interfacial tension to decrease. Production of drops of the same size at a specified rate and controlling their movement’s speed are among the most important factors effective in the efficiency of processes associated with liquid drops, which could profoundly be influenced by the presence of a small amount of a surface active agent. In this study, the effects of surface active agents on the growth,... 

    Experimental and Numerical Investigation of Ferrofluid Droplet Formation under Magnetic Field with Biotechnology Application

    , Ph.D. Dissertation Sharif University of Technology Bijarchi, Mohammad Ali (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Droplet-based microfluidics offers a promising tool in engineering and biomedicine such as drug delivery, biochemistry, sample handling in lab-on-a-chip devices, and tissue engineering. These systems provide the droplets manipulation that can be used as reactors without any contamination for medical purposes. Utilizing magnetic force and ferrofluid droplets can help to better control over the droplet formation and manipulation. Considering the importance of this issue and its rich underlying physics, in this dissertation, ferrofluid droplets formation under a time-dependent, non-uniform magnetic field is studied. A Pulse-Width-Modulation signal (PWM) is utilized to apply the time-dependent... 

    Optimization of Resonator’s Acoustic Performance in the Muffler Set

    , M.Sc. Thesis Sharif University of Technology Asadi, Alireza (Author) ; Khodaygan, Saeed (Supervisor)
    Abstract
    Noise pollution is one of the major issues in automative industry. Many of these noises are caused by the internal combustion engine. Using reactive mufflers in the car's exhaust path can effectively reduce this annoying noises. Imposed pressure drop caused by installation this mufflers must be within an acceptable range for the car engine. Resonators, despite having a much lower pressure drop than other components of the exhaust system, can be used to cover the weaknesses of the muffler in the acoustic performance of the noise reduction set. One of the most common methods for designing a resonator is to use perforated plates. In this study the effect of various geometric parameters of a... 

    Fabrication of Superhydrophobic Surfaces to Decrease Pressure Drop through the Galvanized Pipe and Study about Feasibility of the Fabricated Surface to Use for Non-newtonian Fluid

    , M.Sc. Thesis Sharif University of Technology Pakzad, Hossein (Author) ; Mousavi, Ali (Supervisor) ; Nouri boroojerdi, Ali (Supervisor)
    Abstract
    Nowdays, one of the most important concerns for scientists is increasing CO2 emmisions and global warming. To overcome this problem, a large number of studies have been carried out to improve energy system performance and reducing the overall energy consumption. One solution to this problem is using the superhydrophobic surfaces with contact angle larger than 150°.In this study, we try to reduce the pressure drop through the galvanized pipes. So, by reducing the pressure drop, power required for pumps can be reduced. To this end, two different coatings by silica nano-particles which were modified with first hydrophobic agent are used. In first coating which is named as PS coating, stearic... 

    Eperimental Investigation of Pressure Drop by Using the Superhydrophobic Surfaces

    , M.Sc. Thesis Sharif University of Technology Rad, Vahid (Author) ; Mousavi, Ali (Supervisor) ; Nouri Boroojerdi, Ali (Supervisor)
    Abstract
    Through history, increased energy consumption has been encouraged researchers to improve the performance of energy-using devices. Some researchers believe that hydrophobic surfaces can play an important role in this regard.The encounter and the presence of water on different surfaces can have different effects on them. The surface sedimentation of these surfaces, the eating of metal surfaces, the drag force (water friction) due to water collision with the moving object in water and the attachment of algae And other marine organisms to the surfaces, including the limitations and problems faced by professionals and staff associated with this sector.In the present study, the drag reduction of... 

    The Study of the Effect of Surfactant on the Liquid Drop Motion In Fluid

    , M.Sc. Thesis Sharif University of Technology Kazempour, Ali (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein (Co-Supervisor)
    Abstract
    The drop motion in fluid and the mass transfer is one of the most interesting and favorite topics that has attracted the attention of many researchers. Knowing the functions of the factors affecting the deformation and the process of mass transfer and the effects of the addition of the surfactant, improve the efficiency of the related industrial processes.In this regard, the present study examines how the shape and speed of a moving Newtonian drop in a Newtonian fluid, the mass transfer of soluble material from inside the drop to the surrounding fluid and also the study of the effect of surfactant on the dynamics of moving droplet is studied numerically. During the drop movement, the... 

    Drag Reduction Using Geometrically Structured Surfaces for Non-newtonian Multi-phase Fluids

    , M.Sc. Thesis Sharif University of Technology Javaherchian, Javaneh (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    With the advancement of the industry, microscale devices use due to its unique characteristics. On the other hand, it is essential to find ways to reduce drag inside microchannels because of The importance of energy. One of the methods is to optimize the contact surface using structured geometric surfaces. These hydrophobic surfaces reduce drag by trapping the air in roughness and creating a two-phase flow. The purpose of this project is to reduce the drag within the microchannel using structured geometric surfaces for non-Newtonian and multiphase flows. In most previous studies, with simplification, Newtonian and two-phase flows have been investigated. While most industrial fluids show... 

    Numerical Simulation of Non-Newtonian Droplet Formation under External Electric Field in a Microfluidic Device

    , M.Sc. Thesis Sharif University of Technology Amiri, Nasir (Author) ; Moosavi, Ali (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Droplet formation and breakup processes are one of the important steps in many microfluidic devices with a wide range of biological and chemical applications. The purpose of this study is numerical simulation of non-Newtonian droplet formation under the influence of electric field in a microfluidic system. The innovation aspect of this project is the use of non-Newtonian fluid in this process, which, despite many applications in real issues, has been less studied, and in most of the previous researches, Newtonian fluid assumption has been used to simplify the solving. Also, simultaneously, the effects of an external electric field on this process were also studied. Carboxymethyl cellulose... 

    Numerical and Experimental Investigation of Stator Grooves on Cooling of Generators

    , Ph.D. Dissertation Sharif University of Technology Erfanian Nakhchi Toosi, Mahdi (Author) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    The aim of this thesis is experimentally and numerically investigation of annular flow between the inner rotating smooth surface and the outer stationary grooved surface with or without axial fluid flow. Mounting grooves on the surfaces is important in cooling of rotating machineries such as electric generators and rotating heat pipes. The effect of different parameters such as the air gap between the surfaces, the geometry of the grooves, axial flow and rotation speed are numerically and experimentally investigated. The experimental results with axial grooves show that the entrance length decreases up to 17% with increasing the grooves depth. The reason is enhancement of the mixing and the... 

    Experimental Study of Droplet Formation in Surfactant Solution

    , M.Sc. Thesis Sharif University of Technology Niknezhad, Mahdi (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein (Co-Advisor)
    Abstract
    Surfactants are materials that reduces surface tension, and this property has provided a wide range of applications for them. Most of the surfactants reduce surface tensions at the interface of two fluids. The pharmaceutical and food industries, detergents, cosmetics, agricultural pesticides, dye production and oil extraction are among these applications.In this study, the formation of droplets in the presence of three types of surfactants SDS, CTAB and Tween 20 has been investigated. To evaluate the droplet behavior in the presence of specific surfactants, various parameters such as formation time of the droplet, the diameter and length of the droplet formed, the diameter and length of the...