Loading...
Search for: drying
0.01 seconds
Total 157 records

    Fabrication of porous scaffolds with decellularized cartilage matrix for tissue engineering application

    , Article Biologicals ; Volume 48 , 2017 , Pages 39-46 ; 10451056 (ISSN) Nasiri, B ; Mashayekhan, S ; Sharif University of Technology
    Academic Press  2017
    Abstract
    Due to the avascular nature of articular cartilage, damaged tissue has little capacity for spontaneous healing. Three-dimensional scaffolds have potential for use in tissue engineering approach for cartilage repair. In this study, bovine cartilage tissue was decellularized and chemically crosslinked hybrid chitosan/extracellular matrix (ECM) scaffolds were fabricated with different ECM weight ratios by simple freeze drying method. Various properties of chitosan/ECM scaffolds such as microstructure, mechanical strength, swelling ratio, and biodegradability rate were investigated to confirm improved structural and biological characteristics of chitosan scaffolds in the presence of ECM. The... 

    Fabrication and characterization of a starch-based nanocomposite scaffold with highly porous and gradient structure for bone tissue engineering

    , Article Biomedical Physics and Engineering Express ; Volume 4, Issue 5 , 2018 ; 20571976 (ISSN) Mirab, F ; Eslamian, M ; Bagheri, R ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    Starch based scaffolds are considered as promising biomaterials for bone tissue engineering. In this study, a highly porous starch/polyvinyl alcohol (PVA) based nanocomposite scaffold with a gradient pore structure was made by incorporating different bio-additives, including citric acid, cellulose nanofibers, and hydroxyapatite (HA) nanoparticles. The scaffold was prepared by employing unidirectional and cryogenic freeze-casting and subsequently freeze-drying methods. Fourier transform infrared (FTIR) spectroscopy confirmed the cross-linking of starch and PVA molecules through multiple esterification phenomenon in the presence of citric acid as a cross-linking agent. Field emission scanning... 

    How to improve the thermal performance of pulsating heat pipes: A review on working fluid

    , Article Renewable and Sustainable Energy Reviews ; Volume 91 , 2018 , Pages 630-638 ; 13640321 (ISSN) Alhuyi Nazari, M ; Ahmadi, M. H ; Ghasempour, R ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Pulsating Heat Pipes (PHPs) are cooling devices that are compact in size and have an ability to transfer heat in low temperature differences. Working fluids strongly affect the thermal performance of PHPs. In this paper, effects of some thermophysical parameters relating to working fluids, such as boiling point, latent heat of vaporization, surface tension, thermal conductivity and dynamic viscosity, are presented based on experimental and numerical studies done in recent years. Addition of nanoparticles to fluids, or making nanofuild, is a new method of improving thermophysical properties of fluids. Recently, many studies are carried out on thermophysical properties of nano-fuild. Results... 

    Supersolidus liquid phase sintering of Al6061/SiC metal matrix composites

    , Article Powder Metallurgy ; Volume 52, Issue 1 , 2009 , Pages 28-35 ; 00325899 (ISSN) Asgharzadeh, H ; Simchi, A ; Sharif University of Technology
    2009
    Abstract
    The aim of the present work is to study the effect of reinforcement content and sintering temperature on the densification and microstructural development during sintering of Al6061/SiC composite compacts. Prealloyed Al6061 powder was mixed with various amounts of SiC particles up to 27 vol.-% and compacted at 350 MPa. Sintering was carried out in a dry nitrogen atmosphere at 580-620°C. It was shown that the presence of SiC particles retards the densification of the prealloyed powder during solid phase sintering and liquid phase sintering. This effect is particularly noticeable at SiC fractions higher than ∼9 vol.-%, at which continuous networks of the hard particles are formed. Increasing... 

    Comparison of finite difference schemes for water flow in unsaturated soils

    , Article World Academy of Science, Engineering and Technology ; Volume 40 , 2009 , Pages 21-25 ; 2010376X (ISSN) Taheri Shahraiyni, H ; Ataie Ashtiani, B ; Sharif University of Technology
    2009
    Abstract
    Flow movement in unsaturated soil can be expressed by a partial differential equation, named Richards equation. The objective of this study is the finding of an appropriate implicit numerical solution for head based Richards equation. Some of the well known finite difference schemes (fully implicit, Crank Nicolson and Runge-Kutta) have been utilized in this study. In addition, the effects of different approximations of moisture capacity function, convergence criteria and time stepping methods were evaluated. Two different infiltration problems were solved to investigate the performance of different schemes. These problems include of vertical water flow in a wet and very dry soils. The... 

    CVD synthesis of small-diameter single-walled carbon nanotubes on silicon

    , Article Scientia Iranica ; Volume 16, Issue 1 D , 2009 , Pages 61-64 ; 10263098 (ISSN) Arjmandi, N ; Sasanpour, P ; Rashidian, B ; Sharif University of Technology
    2009
    Abstract
    A simple process for the chemical vapor deposition of ultra SD single-wall carbon nanotubes has been developed. In this process, an iron nitrate nonahydrate solution in isopropyl alcohol with a concentration of (400 μgr/milt) was used to catalyst nanoparticle formation on an oxidized silicon wafer. The oxide on the substrate was made of a thick layer of wet oxide sandwiched between two thin layers of dry oxide. The process results in semiconducting Single-Walled carbon Nano Tubes (SWNTs) with diameters of less than 0.7 nm and more than a 1 ev band gap energy, which are amongst the smallest diameters of SWNTs ever reported. © Sharif University of Technology, June 2009  

    Effect of casting process on microstructure and tribological behavior of LM13 alloy

    , Article Journal of Alloys and Compounds ; Volume 475, Issue 1-2 , 2009 , Pages 321-327 ; 09258388 (ISSN) Ashiri, R ; Niroumand, B ; Karimzadeh, F ; Hamani, M ; Pouranvari, M ; Sharif University of Technology
    2009
    Abstract
    LM13 alloy is widely used in piston industry, due to its low coefficient of thermal expansion, excellent castability and hot tear resistance. In this research effect of casting process on wear behavior of LM13 alloy was investigated. First, samples were produced using two casting processes and heat treated. Then wear behavior of these samples under dry sliding condition was examined. Results of hardness and strength tests indicated that squeeze cast specimens exhibited higher mechanical properties. Wear experiment results showed that in both squeeze and gravity cast specimens, amount of weight loss increases with increase in sliding distance which is accompanied by reduction in wear rate and... 

    Corrosion-wear behavior of AA1050/mischmetal oxides surface nanocomposite fabricated by friction stir processing

    , Article Journal of Alloys and Compounds ; Volume 832 , 2020 Alishavandi, M ; Razmjoo Khollari, M. A ; Ebadi, M ; Alishavandi, S ; Kokabi, A. H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, the wear and corrosion characteristics of six-pass friction stir processed (FSPed) AA1050/mischmetal oxide nanocomposite (6PPA) was compared to six-pass FSPed sample without powder (6 PA) and annealed base metal (BM). Different wear characteristics, such as weight loss, wear rate and coefficient of friction (COF) were studied. In order to evaluate the corrosion resistance of samples, immersion and cyclic polarization tests were performed. In addition, worn and corroded surfaces were investigated by field emission scanning electron microscopy (FESEM). The result of pin on disk dry sliding wear test revealed that wear resistance improved by employing FSP through finer grain... 

    Experimental analysis on the material properties of A356.0 aluminum alloy surface nanostructured by severe shot peening

    , Article Journal of Materials Engineering and Performance ; Volume 29, Issue 1 , 2020 , Pages 143-154 Farrahi, G. H ; Jafarzadeh, H ; Esmaeili, M. A ; Sharif University of Technology
    Springer  2020
    Abstract
    The effects of severe shot-peening process and formation of a nanostructured surface layer on mechanical properties of A356.0 alloy were investigated in this paper. X-ray diffraction analyses revealed that the average size of near-surface grains in severe shot-peened specimens is 75.8 nm. Three types of disk-shaped specimens, non-treated, conventionally shot-peened, and severely shot-peened were subjected to pin-on-disk wear test in the dry condition, in different loading and sliding speeds. Shot-peening process increases both hardness and roughness of the surface, and these two factors have, respectively, positive and negative effects on wear resistance. However, because of high-density... 

    Study of a newly isolated thermophilic bacterium capable of Kuhemond heavy crude oil and dibenzothiophene biodesulfurization following 4S pathway at 60°C

    , Article Journal of Chemical Technology and Biotechnology ; Volume 83, Issue 12 , June , 2008 , Pages 1689-1693 ; 02682575 (ISSN) Torkamani, S ; Shayegan, J ; Yaghmaei, S ; Alemzadeh, I ; Sharif University of Technology
    2008
    Abstract
    Background: To meet stringent emission standards stipulated by regulatory agencies, the oil industry is required to bring down the sulfur content in fuels. As some compounds cannot be desulfurized by existing desulfurizing processes (such as hydrodesulfurization, HDS) biodesulfurization has become an interesting topic for researchers. Most of the isolated biodesulfurizing microorganisms are capable of desulfurization of refined products whose predominant sulfur species are dibenzothiophenes so biocatalyst development is still needed to desulfurize the spectrum of sulfur-bearing compounds present in whole crude. Results: The first desulfurizing bacterium active at 60 °C has been isolated,... 

    The effect of mixing molar ratios and sand particles on microstructure and mechanical properties of metakaolin-based geopolymers

    , Article Materials Chemistry and Physics ; Volume 240 , 2020 Riahi, S ; Nemati, A ; Khodabandeh, A. R ; Baghshahi, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study the influence of the molar ratios such as SiO2:Al2O3:Na2O:H2O, as well as the sand particles on the mechanical performance, shrinkage and microstructure of metakaolin based geopolymers was studied. Considering different content of the reactive silica and alumina in metakaolin, forty eight different compositions were prepared. The proper condition for achieving the highest mechanical performance as well as less structural defects by tailoring the curing condition, molar ratios and addition of sand particles are presented. Special attention was paid to the incorporation of sand particles up to 70 wt% on the microstructure, shrinkage and mechanical properties of metakaolin based... 

    Interpretation of CPT in unsaturated sands under drained conditions: A numerical study

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 45, Issue 18 , 2021 , Pages 2732-2755 ; 03639061 (ISSN) Keshmiri, E ; Ahmadi, M. M ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    A finite difference-based numerical model simulating the cone penetration process in unsaturated sands is presented. Mohr–Coulomb model (MCM) with simple modifications and Sun model (SM) were implemented to capture the unsaturated sand behaviour. It was shown that the cone tip resistance values resulting from the two models were fairly comparable. Predicted cone tip resistance values in dry, saturated and unsaturated sands using MCM were validated by the results of field and calibration chamber tests. Sensitivity analyses were performed, and the influence of parameters including relative density, mean effective stress and apparent cohesion due to suction on the tip resistance was... 

    Synthesis and characterization of polyaniline/nanodiamond hybrid nanostructures with various morphologies to enhance the corrosion protection performance of epoxy coating

    , Article Diamond and Related Materials ; Volume 120 , 2021 ; 09259635 (ISSN) Mohammadkhani, R ; Shojaei, A ; Rahmani, P ; Pirhady Tavandashti, N ; Amouzegar, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, nano-sized diamond particles (ND) were functionalized in two consecutive stages. First, dry thermal oxidation was employed to obtain carboxylated ND. In the next step, carboxylated ND was properly surface modified through wet chemistry to acquire aminated-ND (ND-NH2). Then, polyaniline (PANI) was synthesized in the presence of aminated-ND particles at a broad concentration from 1 wt% to 70 wt% to obtain PANI/ND hybrid nanostructures. The chemical structure, morphology, and thermal stability of nanoparticles were comprehensively characterized by different techniques such as FT-IR, UV–visible, TGA, XRD, FESEM, and TEM. It was observed that the morphology of PANI/ND... 

    Using makeup water to recycle cooling tower evaporated water: A feasibility study using experimental data

    , Article International Journal of Energy Technology and Policy ; Volume 17, Issue 3 , 2021 , Pages 227-238 ; 14728923 (ISSN) Heidari, A ; Heidari, E ; Sharif University of Technology
    Inderscience Publishers  2021
    Abstract
    Wet cooling towers are one of the most water-intensive technologies, which are widely used in air conditioning applications, especially in dry regions. Considering the current water crisis around the world, it is essential to improve the design of these cooling towers to reduce their water consumption, while maintaining their cooling performance. Makeup water of cooling tower is usually a constant-temperature water which is cold enough to condensate the moisture content of the cooling tower exhaust air. Therefore, it has great potential to recycle water evaporation of cooling towers, which is not considered so far. This paper investigates a novel design for cooling towers utilising the... 

    Vibration isolation of foundations subjected to impact loads by open trenches using physical models

    , Article 16th International Conference on Soil Mechanics and Geotechnical Engineering: Geotechnology in Harmony with the Global Environment, ICSMGE 2005, Osaka, 12 September 2005 through 16 September 2005 ; Volume 3 , 2005 , Pages 1497-1500 ; 9059660285 (ISBN); 9789059660281 (ISBN) Jafarzadeh, F ; Sharif University of Technology
    2005
    Abstract
    Surface waves generated during vibration of machine foundations are sometimes troublemaking and cause some damages to the nearby sensitive structures or people. Considering the function of the machines located on the foundations the dynamic loading could be harmonic or impact type. The main part of the generated energy is transferred to the ground by Rayleigh surface waves. One of the most reliable and economic methods for reduction of the effects of these generated waves is using open trenches around the dynamic sources, so called active isolation in literature. In this paper applicability and affecting parameters of the open trenches around the impact dynamic source is studied using... 

    Building circularity as a measure of sustainability in the old and modern architecture: A case study of architecture development in the hot and dry climate

    , Article Energy and Buildings ; Volume 275 , 2022 ; 03787788 (ISSN) Hosseini Honarvar, S. M ; Golabchi, M ; Bararzadeh Ledari, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Nowadays, the construction industry has turned to the consumption of large amounts of natural resources in line with global population growth, which has led to the shortage of resources, and consequently increases in the construction debris; therefore, the present article has studied the positive and negative points of the architectural development process. The results have indicated that being compared to the former architecture; the development of architecture has reduced energy consumption by 78%. Hence, the scarcity of virgin resources and consequently the increase of environmental effects such as Global Warming Potential (GWP) have been measured based on the Life Cycle Assessment (LCA).... 

    Investigating performance of a new design of forced convection solar dryer

    , Article Sustainable Energy Technologies and Assessments ; Volume 50 , 2022 ; 22131388 (ISSN) Rezaei, M ; Sefid, M ; Almutairi, K ; Mostafaeipour, A ; Ao, H. X ; Hosseini Dehshiri, S. J ; Hosseini Dehshiri, S. S ; Chowdhury, S ; Techato, K ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Drying is a common practice for delaying deterioration, preserving quality, and easier prolonged storage of agricultural products. According to the climatic and geographical conditions of Arsanjan County, Fars, Iran. So far, many studies have been conducted on the design and use of various barriers on absorber plates with the aim of increasing heat exchange and subsequently increasing the efficiency of air heaters and solar dryers. However, the effect of using the metal of the sewing machine bobbin on the performance of these dryers has not been studied yet. Therefore, in this study, for the first time, this metal and also pipes containing PCM (phase change material) were used as a barrier... 

    Column study of Cr (VI) adsorption onto modified silica-polyacrylamide microspheres composite

    , Article Chemical Engineering Journal ; Volume 210 , 2012 , Pages 280-288 ; 13858947 (ISSN) Karimi, M ; Shojaei, A ; Nematollahzadeh, A ; Abdekhodaie, M. J ; Sharif University of Technology
    2012
    Abstract
    Adsorption of Cr (VI) from aqueous solution was studied using a continuous fixed bed column which is packed with a new micro-porous composite particle developed in this study. This composite particle is composed of silica porous particle in which acrylamide is polymerized within the pore regions of the silica particles. The composite particle was supposed to maintain the mechanical properties of polyacrylamide as efficient absorbent to serve appropriately in the continuous processes. In order to enhance the adsorption capacity of the composite particle, it was modified with ethylenediamine. Scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR) and... 

    Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions

    , Article Biochemical Engineering Journal ; Volume 67 , 2012 , Pages 208-217 ; 1369703X (ISSN) Amiri, F ; Mousavi, S. M ; Yaghmaei, S ; Barati, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The kinetics of bioleaching of Mo, Ni, and Al from spent hydrocracking catalyst, using Aspergillus niger was studied. The four most effective bioleaching variables were selected in accordance with the Plackett-Burman design and were further optimized via central composite design (CCD). The optimal values of the variables for maximum multi-metal bioleaching were as follows: particle size 150-212. μm, sucrose 93.8. g/L, pulp density 3%. w/v, and pH 7. The maximum metal recoveries corresponding to these conditions were 99.5 ± 0.4% Mo, 45.8 ± 1.2% Ni, and 13.9 ± 0.1% Al. The relatively low Ni extraction was attributed to the precipitation of Ni in the presence of oxalic acid. Under the optimal... 

    Comparison of dry reforming of methane in low temperature hybrid plasma-catalytic corona with thermal catalytic reactor over Ni/γ-Al 2O 3

    , Article Journal of Natural Gas Chemistry ; Volume 21, Issue 4 , 2012 , Pages 466-475 ; 10039953 (ISSN) Aziznia, A ; Bozorgzadeh, H. R ; Seyed Matin, N ; Baghalha, M ; Mohamadalizadeh, A ; Sharif University of Technology
    2012
    Abstract
    In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO 2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature range of 923-1023 K, and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure. The effect of feed flow rate, discharge power and Ni/γ-Al 2O 3 catalysts are studied. When CH 4/CO 2 ratio in the feed is 1/2, the syngas of low H 2/CO ratio at about 0.56 is obtained, which is a potential feedstock for synthesis of liquid hydrocarbons. Although Ni catalyst is only active above 573 K, presence of Ni catalysts in the cold corona plasma...