Loading...
Search for: ductility
0.012 seconds
Total 242 records

    Bimodal grain size and mechanical properties enhancement in low carbon steel by ultra-rapid annealing

    , Article Journal of Materials Research and Technology ; Volume 18 , 2022 , Pages 2363-2367 ; 22387854 (ISSN) Mostafaei, M. A ; Kazeminezhad, M ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    Different heating rates of 200-1200 deg;C/s were utilized during ultra-rapid annealing (URA) up to the temperatures of 730 and 760 °C on the severely deformed low carbon steel. Higher hardness, strength and ductility achieved for the sample heated at 730 °C with 600 °C/s due to formation of bimodal grain size (BGS) microstructure than them for non-BGS samples. The BGS enhancement for the hardness, strength and ductility with respect to those of as received sample was 67%, 80% and 7%, respectively, and, with respect to those of severely deformed one was 16%, 44% and 24%, respectively. URA with the heating rate of 200 °C/s and 1000 °C/s leads to fully recrystallized and non-recrystallized... 

    Effect of compressive glass fiber-reinforced polymer bars on flexural performance of reinforced concrete beams

    , Article ACI Structural Journal ; Volume 119, Issue 6 , 2022 , Pages 5-18 ; 08893241 (ISSN) Hassanpour, S ; Khaloo, A ; Aliasghar Mamaghani, M ; Khaloo, H ; Sharif University of Technology
    American Concrete Institute  2022
    Abstract
    This research studies the effect of glass fiber-reinforced polymer (GFRP) bars as compressive reinforcement in reinforced concrete (RC) beam members. Three singly and six doubly reinforced GFRP-RC beams were tested under a four-point loading configuration. The effect of compressive reinforcement on the load-bearing capacity, ductility, stiffness, and failure mode is determined. Also, the compressive performance of GFRP bars is evaluated by testing GFRP-RC cylinders. According to the results, GFRP bars in compression had a limited contribution to enhancing flexural strength, and the maximum increment in the flexural capacity of doubly reinforced beams compared to singly reinforced specimens...