Loading...
Search for: ductility
0.011 seconds
Total 242 records

    The Effect of Martensite Morphology on Mechanical Properties of TLP Bonded Dual Phase Steels

    , M.Sc. Thesis Sharif University of Technology Fazaeli, Abolfazl (Author) ; Ekrami, Ali Akbar (Supervisor) ; Kokabi, Amir Hossein (Supervisor)
    Abstract
    In the present study the production of ferrite-martensite dual-phase (DP) Steel was investigated during the bonding process by transient liquid phase method. The effect of martensite morphologies on mechanical properties of bonding zone were also studied. To make the bonding process and DP steel production heat treatment cycle simultaneously, the step in which the isothermal solidification completed, bonding process, was done simultaneously with austenitising of the steel. Homogenizing of the bond zone, was also done with DP steel making at the intercritical temperature. The St52 steel was utilized for producing DP steel and for bonding process, iron base interlayer with melting point of... 

    Plastic Analysis of Steel Grillages Considering Bending-Tortion Iteraction

    , M.Sc. Thesis Sharif University of Technology Rahbarnia, Bahram (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Grillage structures are used at roofs of some buildings and community halls and shopping centers and airports, or structures that used as bowers. The grillages is constructed with steel or concrete beams. In most of the carried out Researchs the twisting effect on these structures has been ignored. In this research the behavior of such structures with considering regulation and softwares limits by some simple programable assumptions is simulated. So with using MATLAB software a program extracted for grillages nonlinear analysis and its results was compared with common engineering software. In This approach in addition to pure bending, bending – torsion interaction is considered too and I... 

    On The Behavior of Low-Rise, Irregular, Dual Structures

    , M.Sc. Thesis Sharif University of Technology Khazaei, Siamak (Author) ; Mofid, Masoud (Supervisor)
    Abstract
    The Response modification factor R represents the behavior of the structure such as ductility, overstrength and the inherent redundancy. This factor shall be defined according to the type of lateral force resisting system. However, there are some complexities and/or uncertainties in codes related to the R factor according to the height, form of irregularities and structural systems. Therefore, from the scientific point of view as well as reliability, it is very clear that the R factor cannot be similar for all kinds of structures, categorized as a specific group. In this investigation, assuming a low-rise, vertically irregular structure with a heliport which has a dual structural system... 

    Retrofitting of Existing Steel Frames using Ductile Bracing Systems

    , M.Sc. Thesis Sharif University of Technology Seyyed Farizani, Sarah (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Recent earthquakes indicate the importance of retrofitting existing structures to achieve an acceptable level of performance. Use of bracing systems is a cost-effective method for seismic retrofitting of existing steel frames. In particular, Buckling Restrained Braces (BRBs) and Special Concentrically Bracing systems (SCB) are practical choices to be used because of their large energy dissipation capacity especially under moderate to severe earthquakes. Buckling restrained braces which yield in both tension and compression, exhibits stable and predictable hysteretic behavior. In this study several existing steel frames, which are designed based on older versions of the building codes, have... 

    Nonlinear Quantification and Seismic Evaluation of EBF Disposal Systems in Mid-story Structures

    , M.Sc. Thesis Sharif University of Technology Hooshmandi, Matin (Author) ; Mofid, Masoud (Supervisor)
    Abstract
    In the present study it was intended to evaluate the seismic performance of multi-story EBF structures for designing. When adopting this method, parametric studies are carried out based on the nonlinear performance of such systems whiting the framework of nonlinear static and dynamic analyses. In lines with seismic strengthening of such structures, this study tries to reassess the performance of these systems through increasing ductility and replacing bracing frames with energy damper and special seismic systems. As a result, a fuse type performance is created to protect the other elements of the structure. This study describes the seismic strengthening of this type of dampers using simple... 

    Study on Behavior of Diagonally Stiffened Steel Plate Shear Walls

    , Ph.D. Dissertation Sharif University of Technology Akhavan Sigariyazd, Mohammad Hossein (Author) ; Joghataie, Abdolreza (Supervisor) ; Khajeh Ahmad Attari, Nader (Supervisor)
    Abstract
    In this study, the behavior of diagonally stiffened steel plate shear wall systems which have a new configuration of stiffeners is investigated. This dissertation is divided into three main sections which contain experimental studies, finite element analysis and developing design equations. In the section on experimental studies, 5 single-bay, single-story, one-third scale specimens were tested. An unstiffened specimen as a control sample and two other specimens with different configuration of stiffeners were constructed and tested to study the effect of diagonal stiffeners. Based on the observations during the tests, it was decided to add and study two other specimens too, including one... 

    Analytical Study of Column Base Plates under Earthquake Loading

    , M.Sc. Thesis Sharif University of Technology Mollazeinal, Mohammad Hossein (Author) ; Maleki, Shervin (Supervisor)
    Abstract
    One of the most important connections in a structure is the column base plate connection. In structures subjected to earthquake loading, this connection is usually where a plastic hinge can develop and therefore is of utmost importance. In this paper, behavior of base plates under monotonic and cyclic loading is investigated. The failure modes, that are one of the fundamental targets in this study include base plate yielding, anchor bolt yielding and also failure arising due to crushing of concrete. A parametric study is conducted using nonlinear finite element analysis. Parametes such as plate thickness, anchor bolt size and location and concrete strength are considered. The desired... 

    Behavior of polymer concrete beam/pile confined with CFRP sleeves

    , Article Mechanics of Advanced Materials and Structures ; 2017 , Pages 1-8 ; 15376494 (ISSN) Toufigh, V ; Toufigh, V ; Saadatmanesh, H ; Ahmari, S ; Kabiri, E ; Sharif University of Technology
    Abstract
    This research investigates the flexural behavior of a polymer concrete beam/pile encased with carbon fiber sleeve. The mechanical properties of carbon fiber sleeves in tension and cement and polymer concrete in compression were determined. Polymer concrete beams were tested in flexure to determine the bending moment capacity. Then, the test results were compared to the theoretical model results. Finally, a parametric study was conducted to determine the influence of beam/pile parameters on the capacity of the element. Based on the investigation, carbon fiber sleeve filled with polymer concrete exhibits outstanding structural performance including ductility and bending capacity. © 2017 Taylor... 

    Effect of the strain rate on the intermediate temperature brittleness in Zr-based bulk metallic glasses

    , Article Journal of Non-Crystalline Solids ; Volume 475 , 2017 , Pages 172-178 ; 00223093 (ISSN) Asadi Khanouki, M. T ; Tavakoli, R ; Aashuri, H ; Sharif University of Technology
    Abstract
    In this work, the effect of strain rate on the ductility, intermediate temperature brittleness and fracture surface of Zr-based BMG over a wide range of temperatures from 0.1 Tg to near Tg, has been systematically investigated. The results showed two remarkable ductile to brittle transition at low cryogenic and intermediate temperatures. At low temperatures, below 0.4 Tg, the activation of diffusion mediated phenomena is negligible and the combined effects of strain rate and temperature contribute to the plasticity of material by changing the STZ volume, hence the possibility of forming multiple shear bands. At the temperature range from 0.4 Tg to the temperature at which the intermediate... 

    Design of passive viscous fluid control systems for nonlinear structures based on active control

    , Article Journal of Earthquake Engineering ; 2017 , Pages 1-22 ; 13632469 (ISSN) Zare, A. R ; Ahmadizadeh, M ; Sharif University of Technology
    Abstract
    A practical procedure is developed for the design of passive control systems using viscous fluid dampers for nonlinear structures. The design methodology takes advantage of the modification of the damping, strength, and stiffness properties of the structure to achieve the desired relative displacement and absolute acceleration response. For this purpose, a study of poles in the complex plane is used to determine the required changes in the dynamic properties of nonlinear structures. Furthermore, a relatively simple relation between the ductility demands of highly damped single- and multiple-degree-of-freedom (SDF and MDF respectively) systems is established to reduce the computational burden... 

    Probabilistic evaluation of 2015 NEHRP soil-structure interaction provisions

    , Article Journal of Engineering Mechanics ; Volume 143, Issue 9 , 2017 ; 07339399 (ISSN) Khosravikia, F ; Mahsuli, M ; Ghannad, M. A ; Sharif University of Technology
    Abstract
    This paper reveals the consequences of practicing the 2015 National Earthquake Hazards Reduction Program (NEHRP) soilstructure interaction (SSI) provisions, which form the basis of the 2016 edition of the seismic design standard provided by the ASCE. For this purpose, the probability that the practice of SSI provisions, in lieu of fixed-base provisions, increases the ductility demand of the structure computed. It is subsequently investigated whether the NEHRP provisions are indeed an improvement upon the SSI provisions of the current ASCE seismic design standard. To this end, 720 soil-structure systems with different numbers of stories, structural systems, aspect ratios, and foundation... 

    The seismic performance of K-braced cold-formed steel shear panels with improved connections

    , Article Journal of Constructional Steel Research ; Volume 135 , 2017 , Pages 56-68 ; 0143974X (ISSN) Pourabdollah, O ; Farahbod, F ; Rahimzadeh Rofooei, F ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this paper the performance of light weight K-braced cold formed steel (CFS) shear panels under cyclic loading is experimentally evaluated. It is generally known that the brace-stud connection details has an important effect on the performance of the braced CFS shear panels in terms of lateral stiffness, energy dissipation, and ductility factor. In this study, four full-scale, 2.4 m × 2.4 m, braced CFS shear panels made of C-sections were tested. It was observed that proper modification of the currently utilized braced to stud connections in K-braced, CFS shear panels could enhance their performance considerably by increasing their ultimate shear resistance up to 7 folds. Furthermore,... 

    Coreless self-centering braces as retrofitting devices in steel structures

    , Article Journal of Constructional Steel Research ; Volume 133 , 2017 , Pages 485-498 ; 0143974X (ISSN) Attari Dezfuli, M ; Dolatshahi, K. M ; Mofid, M ; Sadeghi Eshkevari, S ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Conventional lateral resisting systems can provide sufficient strength and ductility for design based earthquakes, although the considerable residual deformation remaining in the plasticized regions undermines the resiliency of the structures. In order to resolve this problem, various self-centering systems have been proposed and tested in recent years, most of which are specified for new buildings and are not simply suitable for retrofitting applications. Moreover, the available self-centering systems are costly and complex to assemble, which can be considered as a serious barrier for practical application. To address these drawbacks, an innovative Core-Less Self-Centering (CLSC) brace is... 

    Probabilistic analysis of soil-structure interaction effects on the seismic performance of structures

    , Article Earthquake Engineering and Structural Dynamics ; Volume 46, Issue 4 , 2017 , Pages 641-660 ; 00988847 (ISSN) Mirzaie, F ; Mahsuli, M ; Ghannad, M. A ; Sharif University of Technology
    Abstract
    This paper revisits the phenomenon of dynamic soil-structure interaction (SSI) with a probabilistic approach. For this purpose, a twofold objective is pursued. First, the effect of SSI on inelastic response of the structure is studied considering the prevailing uncertainties. Second, the consequence of practicing SSI provisions of the current seismic design codes on the structural performance is investigated in a probabilistic framework. The soil-structure system is modeled by the sub-structure method. The uncertainty in the properties of the soil and the structure is described by random variables that are input to this model. Monte Carlo sampling analysis is employed to compute the... 

    Deformation behavior of severely deformed al and related mechanisms through warm tensile test

    , Article Journal of Materials Engineering and Performance ; Volume 26, Issue 3 , 2017 , Pages 1311-1324 ; 10599495 (ISSN) Charkhesht, V ; Kazeminezhad, M ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Flow stress and ductility behaviors of the annealed and severely deformed Al were investigated at warm deformation temperatures. Constrained groove pressing (CGP) method as a severe plastic deformation process was used. The tensile test was carried out at the temperature range of the 298-573 K and strain rate range of 0.001-0.1 s−1 to present the elevated temperature deformation behavior utilizing hyperbolic sine constitutive equation. The flow stress of the CGPed sample is increased with the number of CGP passes and decreased with temperature. Dynamic recovery and strain softening are found as main restoration mechanisms. Flow stress amounts are not remarkably affected by the strain rate.... 

    Effect of chemical composition and affinity on the short- and medium-range order structures and mechanical properties of Zr-Ni-Al metallic glass

    , Article Journal of Non-Crystalline Solids ; Volume 456 , 2017 , Pages 68-75 ; 00223093 (ISSN) Jafary Zadeh, M ; Tavakoli, R ; Koh, J. J ; Aitken, Z. H ; Zhang, Y. W ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Previous studies have shown that a small variation in the chemical composition of metallic glasses (MGs) can drastically alter their strength and ductility. However, the underlying structural origin and atomistic mechanisms remain unclear. Using large-scale molecular dynamics simulations, we studied the effect of chemical composition and affinity on the microstructure and deformation behaviour of Zr50Ni50 − xAlx MG by varying the value of x in the range of 5 ≤ x ≤ 25 (at.%). We show that an increase in x is able to strengthen and embrittle the material. In particular, a ductile (homogeneous deformation) to brittle (shear banding) transition occurs at x ~ 15. To reveal the structural origin,... 

    Effects of foundation uplift on the dynamic response of steel frames

    , Article Structures Congress 2017: Buildings and Special Structures - Selected Papers from the Structures Congress 2017, 6 April 2017 through 8 April 2017 ; 2017 , Pages 459-472 ; 9780784480410 (ISBN) Salehi, M ; Jafarieh, A. H ; Ghannad, M. A ; Sharif University of Technology
    Abstract
    This paper examines the effects of foundation uplift on the dynamic response of steel frames supported by shallow foundations. In order to achieve this goal, the dynamic responses of a number of two-dimensional concentrically braced steel frames with fixed base, flexible base preventing uplift, and flexible base allowing uplift, are compared. The steel frames are modeled by considering material nonlinearities and P-Delta effects, while the soil-foundation system is modeled through the Winkler foundation approach. The dynamic analyses are conducted using 15 far-fault ground-motions with various intensities and different response parameters are monitored. According to the achieved responses,... 

    Study of Structural and Mechanical Properties of Zr-, Ti- and La-based bulk Metallic Glasses

    , Ph.D. Dissertation Sharif University of Technology Asadi Khanouki, Mohammad Taghi (Author) ; Aashuri, Hossein (Supervisor) ; Tavakoli, Rouhollah (Supervisor)
    Abstract
    Bulk metallic glasses (BMGs), in contrast to conventional crystalline materials, are defined as metals with an amorphous and disordered atomic-scale structure. Due to the absence of dislocations and grain boundaries, BMGs have considerably unique mechanical properties such as high strength and elastic strain, high wear resistance and desirable corrosion resistance. However, they generally suffer from poor plasticity caused by an inhomogeneous deformation which leads to catastrophic failure by localization of strain into narrow regions, known as shear bands. This factor has extremely restricted their application as advanced structural materials. Furthermore, the recently discovered phenomenon... 

    Seismic reliability-based design of inelastic base-isolated structures with lead-rubber bearing systems

    , Article Soil Dynamics and Earthquake Engineering ; Volume 115 , 2018 , Pages 589-605 ; 02677261 (ISSN) Shoaei, P ; Tahmasebi Orimi, H ; Zahrai, S. M ; Sharif University of Technology
    Abstract
    In this paper, a seismic reliability-based approach is proposed to design inelastic steel moment frame structures isolated by lead-rubber bearing (LRB) systems. An equivalent two-degree-of-freedom system is assumed in which a bilinear behaviour is assigned to both the superstructure and the base. Furthermore, uncertainties associated with the equivalent superstructure mass, stiffness, and yield properties are taken into account by employing proper probability density functions. The proposed design approach is twofold: 1) Reliability curves that return the key design parameters of the inelastic base-isolated structure including: the period of the superstructure, the target base displacement,... 

    Microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

    , Article Materials Science and Engineering A ; Volume 737 , 2018 , Pages 213-222 ; 09215093 (ISSN) Mahmoudiniya, M ; Kokabi, A. H ; Kheirandish, S ; Kestens, L. A. I ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In the present work, friction stir welding technique was applied on 2 mm thick ferrite-martensite DP700 steel sheets at rotational speeds of 600, 800 and 1000 rpm. The microstructure and mechanical properties of the welds were evaluated. It was found that Zener-Hollomon parameter decreased with increasing rotational speed that leads to grain coarsening in the stir zone. It was also found that increment of rotational speed increased softening phenomenon in sub-critical heat affected zone. The results also showed that the presence of WC particles in the stir zone, which was due to the tool wear, as well as formation of a soft ferrite band degrade the tensile properties at rotational speed of...