Loading...
Search for: eigenvalues
0.013 seconds
Total 243 records

    Unified basis-free relation between two stress tensors conjugate to arbitrary Hill's strain measures

    , Article ASME PVP2006/ICPVT-11 Conference, Vancouver, BC, 23 July 2006 through 27 July 2006 ; Volume 2006 , 2006 ; 0277027X (ISSN); 0791837823 (ISBN); 9780791837825 (ISBN) Asghari, M ; Naghdabadi, R ; Sharif University of Technology
    American Society of Mechanical Engineers(ASME)  2006
    Abstract
    The concept of energy conjugacy for stress and strain measures states that a stress tensor T is conjugate to a strain measure E if T: Ė provides the rate of change of the internal energy per unit reference volume of the body in an adiabatic process. The applications of the conjugate stress and strain measures are in the development of the basic relations in nonlinear analysis of solids. In this paper using eigenprojection method, unified explicit basis-free relation between two arbitrary stress tensors T(f) and T (g), respectively conjugate to two measures of Hill's strains is determined. The result is valid for arbitrary dimension of the Euclidean inner product space and for all cases of... 

    On the static and dynamic stability of thin beam conveying fluid

    , Article Meccanica ; Volume 54, Issue 11-12 , 2019 , Pages 1847-1868 ; 00256455 (ISSN) Askarian, A. R ; Abtahi, H ; Firouz Abadi, R. D ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this paper, numerical investigation of the statical and dynamical stability of aligned and misaligned viscoelastic cantilevered beam is performed with a terminal nozzle in the presence of gravity in two cases: (1) effect of fluid velocity on the flutter boundary of beam conveying fluid and (2) effect of gravity on the buckling boundary of beam conveying fluid. The beam is assumed to have a large width-to-thickness ratio, so the out-of-plane bending rigidity is far higher than the in-plane bending and torsional rigidities. Gravity vector is considered in the vertical direction. Thus, deflection of the beam because of the gravity effect couples the in-plane bending and torsional equations.... 

    Bending-torsional stability analysis of aerodynamically covered pipes with inclined terminal nozzle and concurrent internal and external flows

    , Article Journal of Fluids and Structures ; Volume 94 , 2020 Askarian, A. R ; Rahmanian, M ; Haddadpour, H ; Dehghani Firouz Abadi, R ; Sharif University of Technology
    Academic Press  2020
    Abstract
    Stability analysis of a cantilevered pipe with an inclined terminal nozzle as well as simultaneous internal and external fluid flows is investigated in this study. The pipe is embedded in an aerodynamic cover with negligible mass and stiffness simply to streamline the external flow and avoid vortex induced vibrations. The structure of pipe is modeled as an Euler–Bernoulli beam and effects of internal fluid flow including flow-induced inertia, Coriolis and centrifugal forces and the follower force induced by the exhausting jet are taken into account. In addition, neglecting the compressibility effect and using the unsteady Wagner model, aerodynamic loading is determined as a distributed... 

    Thermal entanglement of spins in the Heisenberg model at low temperatures

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 70, Issue 5 A , 2004 , Pages 052307-1-052307-5 ; 10502947 (ISSN) Asoudeh, M ; Karimipour, V ; Sharif University of Technology
    2004
    Abstract
    The entanglement between two spins in the ferromagnetic Heisenberg chain at low temperatures was calculated. It was shown that if a magnetic field is applied to a ferromagnetic Heisenberg chain, then pairwise entanglement develops between spins at arbitrary given states. It was also shown that the entanglement profile is a Gaussian with a characteristic length depending on the temperature and the coupling between spins only when the ground state and the one-particle states are populated. The magnetic field was shown to affect only the amplitude of the profile and not its characteristic length  

    A quasi-newtonian approach to bohmian mechanics II: inherent quantization

    , Article Annales de la Fondation Louis de Broglie ; Volume 34, Issue 2 , 2009 , Pages 165-181 ; 01824295 (ISSN) Atiq, M ; Karamian, M ; Golshani, M ; Sharif University of Technology
    2009
    Abstract
    In a previous paper, we obtained the functional form of quantum potential by a quasi-Newtonian approach and without appealing to the wave function. We also described briefly the characteristics ofthis approach to the Bohmian mechanics. In this article, we consider the quantization problem and we show that the 'eigenvalue postulate' is a natural consequence of continuity condition and there is no need for postulating that the spectrum of energy and angular momentum are eigenvalues of their relevant operators. In other words, the Bohmian mechanics predicts the 'eigenvalue postulate'  

    Direct synthesis of fixed-order h∞ controllers

    , Article IEEE Transactions on Automatic Control ; Volume 60, Issue 10 , July , 2015 , Pages 2704-2709 ; 00189286 (ISSN) Babazadeh, M ; Nobakhti, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This technical note considers the fixed-order H∞ output feedback control design problem for linear time invariant (LTI)systems. The objective is to design a fixed-order controller with guaranteed stability and closed-loop H∞ performance. This problem is NP-hard due to the non-convex rank constraint which appears in the formulation. We propose an algorithm for non-iterative direct synthesis (NODS) of reduced order robust controllers. NODS entails initial computation of two positive-definite matrices via full-order convex LMI conditions. These are then utilized by appropriate eigenvalue decomposition to directly obtain a suboptimal convex formulation for the fixed-order controller  

    Free vibration of joined cylindrical–hemispherical FGM shells

    , Article Archive of Applied Mechanics ; Volume 90, Issue 10 , 2020 , Pages 2185-2199 Bagheri, H ; Kiani, Y ; Bagheri, N ; Eslami, M. R ; Sharif University of Technology
    Springer  2020
    Abstract
    Free vibration response of a joined shell system including cylindrical and spherical shells is analyzed in this research. It is assumed that the system of joined shell is made from a functionally graded material (FGM). Properties of the shells are assumed to be graded through the thickness. Both shells are unified in thickness. To capture the effects of through-the-thickness shear deformations and rotary inertias, first-order shear deformation theory of shells is used. The Donnell type of kinematic assumptions is adopted to establish the general equations of motion and the associated boundary and continuity conditions with the aid of Hamilton’s principle. The resulting system of equations is... 

    Asymptotic eigenvectors, topological patterns and recurrent networks

    , Article Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science ; Volume 14, Issue 2 , 2013 , Pages 95-100 ; 14549069 (ISSN) Bahraini, A ; Sharif University of Technology
    2013
    Abstract
    The notions of asymptotic eigenvectors and asymptotic eigenvalues are defined. Based on these notions a special probability rule for pattern selection in a Hopfield type dynamics is introduced. The underlying network is considered to be a d-regular graph, where d is an integer denoting the number of nodes connected to each neuron. It is shown that as far as the degree d is less than a critical value dc, the number of stored patterns with m μ = O(1) can be much larger than that in a standard recurrent network with Bernouill random patterns. As observed in [4] the probability rule we study here turns out to be related to the spontaneous activity of the network. So our result might be an... 

    An exact method for the extraction of effective bulk and surface parameters of periodic artificial media

    , Article IEEE Transactions on Antennas and Propagation ; Volume 63, Issue 6 , 2015 , Pages 2521-2531 ; 0018926X (ISSN) Barzegar Parizi, S ; Rejaei, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    A new method is presented for the extraction of the bulk and surface parameters of a periodic artificial medium which uses the eigenvectors of the generalized transfer matrix of a unit layer. These eigenvectors correspond to the Bloch modes of the periodic structure. The eigenvector related to the propagating Bloch mode directly yields an expression for the effective, intrinsic wave impedance of the medium. Moreover, the interface between the artificial material and a surrounding, conventional (dielectric) region is described by an interface impedance matrix which accounts for the excitation of higher order, nonpropagating Bloch modes at the interface. Although these modes do not propagate... 

    Deriving surface impedance for 2-d arrays of graphene patches using a variational method

    , Article IEEE Journal of Quantum Electronics ; Volume 53, Issue 1 , 2017 ; 00189197 (ISSN) Barzegar Parizi, S ; Tavakol, M. R ; Khavasi, A ; Sharif University of Technology
    Abstract
    In this paper, we extract the fundamental resonant mode of a graphene patch using a variational method. We use 2-D eigenvalue problem obtained from the integral equation governing the surface current on graphene patterns under quasi-static approximation. To compute the eigenvalues, we propose three trial eigenfunctions, which meet the boundary conditions. We investigate the accuracy of these eigenfunctions with comparing to the results obtained by full wave simulations. Finally, we analyze square-lattice arrangements of graphene patches using the most accurate proposed eigenfunction and derive a very accurate surface impedance for it. The proposed surface impedance is much more precise than... 

    Coupled bending torsional vibrations of viscoelastic rotors with fractional damper

    , Article JVC/Journal of Vibration and Control ; 2022 ; 10775463 (ISSN) Bayat, Z ; Haddadpour, H ; Zamani, Z ; Sharif University of Technology
    SAGE Publications Inc  2022
    Abstract
    The behavior of a Jeffcott rotor with lateral-torsional coupling is investigated in the presence of internal and external damping and eccentricity. The governing equations are derived based on the Lagrange method. Also, the Laplace method and linearization is used to solve the governing equations for free vibrations analysis. For a rotor with unbalance, the instability occurs when the real part of eigenvalues has positive values, and at the same time, it is the intersection point between the lines of natural frequencies. The instability speed increases with increasing the external damping, yet dependent on the internal damping and unbalance. Also, it is demonstrated that the rotor critical... 

    A new reduced-order modeling approach based on fluid eigenmodes and boundary element method

    , Article 23rd AIAA Applied Aerodynamics Conference, Toronto, ON, 6 June 2005 through 9 June 2005 ; Volume 2 , 2005 , Pages 1245-1252 ; 10485953 (ISSN) Behbahani Nejad, M ; Nobari, A. S ; Shahverdi, H ; Haddadpour, H ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2005
    Abstract
    This paper presents a new reduced-order modeling approach based on boundary element method. In this approach the eigenvalue problem of the unsteady flows is defined based on the unknown wake singularities. By constructing this reduced-order model, the body quasi-static eigenmodes are removed from the eigensystem and it is possible to obtain satisfactory results without static correction technique when enough eigenmodes are used. In addition to the conventional method, Eigenanalysis and reduced-order modeling of unsteady flows over a NACA 0012 airfoil and a wing with NACA 0012 section are performed using this new ROM method. Numerical examples are presented that demonstrate the accuracy and... 

    Reduced-order modeling of unsteady flows without static correction requirement

    , Article Journal of Aircraft ; Volume 42, Issue 4 , 2005 , Pages 882-886 ; 00218669 (ISSN) Behbahani Nejad, M ; Haddadpour, H ; Esfahanian, V ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2005
    Abstract
    A new reduced-order modeling approach is presented. This approach is based on fluid eigenmodes and without using the static correction. The vortex lattice method is used to analyze unsteady flows over two-dimensional airfoils and three-dimensional wings. Eigenanalysis and reduced-order modeling are performed using a conventional method with and without the static correction technique. In addition to the conventional method, eigenanalysis and reduced-order modeling are also performed using the new proposed method, that is, without static correction requirement. Numerical examples are presented to demonstrate the accuracy and computational efficiency of the proposed method. Based on the... 

    Photonic crystal devices analysis based on perturbation theory

    , Article Photonic Crystal Materials and Devices IV, San Jose, CA, 23 January 2006 through 26 January 2006 ; Volume 6128 , 2006 ; 0277786X (ISSN); 0819461709 (ISBN); 9780819461704 (ISBN) Chamanzar, M ; Khorasani, S ; Atabaki, A ; SPIE ; Sharif University of Technology
    2006
    Abstract
    A novel approach for photonic crystals devices analysis, based on perturbation theory is reported. In this method the photonic crystal device is considered as the superposition of a parent lattice and a perturbing one. Then the solution is investigated in terms of the eigensolutions of the parent lattice. This way, one can easily obtain analytic expressions within the first order perturbation, describing the effects of different parameters on the eigensolutions of the structure. The perturbation theory employed in this work is typical of what is conventionally used in quantum mechanics literature. The proposed method is explicit, works fast, and does not involve complicated numerical... 

    Three-dimensional diffraction analysis of phase and amplitude gratings based on legendre expansion of electromagnetic fields

    , Article Photonic Applications in Nonlinear Optics, Nanophotonics, and Microwave Photonics, Toronto, ON, 12 September 2005 through 14 September 2005 ; Volume 5971 , 2005 ; 0277786X (ISSN) Chamanzar, M ; Mehrany, K ; Rashidian, B ; Ranjbaran, M ; Morandotti R. A ; Ruda H. E ; Yao J ; Sharif University of Technology
    2005
    Abstract
    Three-dimensional vectorial diffraction analysis of phase and amplitude gratings in conical mounting is presented based on Legendre expansion of electromagnetic fields. In the so-called conical mounting, different fields components are coupled and the solution is not separable in terms of independent TE and TM cases. In contrast to conventional RCWA in which the solution is obtained using state variables representation of the coupled wave amplitudes by expanding space harmonic amplitudes of the fields in terms of the eigenfunctions and eigenvectors of the coefficient matrix defined by rigorous coupled wave equations, here the solution of first order coupled Maxwell's equations is expanded in... 

    Planar diffraction analysis of homogeneous and longitudinally inhomogeneous gratings based on legendre expansion of electromagnetic fields

    , Article IEEE Transactions on Antennas and Propagation ; Volume 54, Issue 12 , 2006 , Pages 3686-3694 ; 0018926X (ISSN) Chamanzar, M. R ; Mehrany, K ; Rashidian, B ; Sharif University of Technology
    2006
    Abstract
    Planar grating diffraction analysis based on Legendre expansion of electromagnetic fields is reported. In contrast to conventional RCWA in which the solution is obtained using state variables representation of the coupled wave amplitudes; here, the solution is expanded in terms of Legendre polynomials. This approach, without facing the problem of numerical instability and inevitable round off errors, yields well-behaved algebraic equations for deriving diffraction efficiencies, and can be employed for analysis of different types of gratings. Thanks to the recursive properties of Legendre polynomials, for longitudinally inhomogeneous gratings, wherein differential equations with non-constant... 

    On nodal domains and higher-order Cheeger inequalities of finite reversible Markov processes

    , Article Stochastic Processes and their Applications ; Volume 122, Issue 4 , April , 2012 , Pages 1748-1776 ; 03044149 (ISSN) Daneshgar, A ; Javadi, R ; Miclo, L ; Sharif University of Technology
    2012
    Abstract
    Let L be a reversible Markovian generator on a finite set V. Relations between the spectral decomposition of L and subpartitions of the state space V into a given number of components which are optimal with respect to min-max or max-min Dirichlet connectivity criteria are investigated. Links are made with higher-order Cheeger inequalities and with a generic characterization of subpartitions given by the nodal domains of an eigenfunction. These considerations are applied to generators whose positive rates are supported by the edges of a discrete cycle Z N, to obtain a full description of their spectra and of the shapes of their eigenfunctions, as well as an interpretation of the spectrum... 

    Graph homomorphisms and nodal domains

    , Article Linear Algebra and Its Applications ; Volume 418, Issue 1 , 2006 , Pages 44-52 ; 00243795 (ISSN) Daneshgar, A ; Hajiabolhassan, H ; Sharif University of Technology
    2006
    Abstract
    In this paper, we derive some necessary spectral conditions for the existence of graph homomorphisms in which we also consider some parameters related to the corresponding eigenspaces such as nodal domains. In this approach, we consider the combinatorial Laplacian and co-Laplacian as well as the adjacency matrix. Also, we present some applications in graph decompositions where we prove a general version of Fisher's inequality for G-designs. © 2006 Elsevier Inc. All rights reserved  

    On nodal domains and higher-order Cheeger inequalities of finite reversible Markov processes [electronic resource]

    , Article Stochastic Processes and their Applications ; Volume 122, Issue 4, April 2012, Pages 1748–1776 Daneshgar, A. (Amir) ; Javadi, Ramin ; Miclo, Laurent ; Sharif Univercity of Technology
    Abstract
    Let LL be a reversible Markovian generator on a finite set View the MathML sourceV. Relations between the spectral decomposition of LL and subpartitions of the state space View the MathML sourceV into a given number of components which are optimal with respect to min–max or max–min Dirichlet connectivity criteria are investigated. Links are made with higher-order Cheeger inequalities and with a generic characterization of subpartitions given by the nodal domains of an eigenfunction. These considerations are applied to generators whose positive rates are supported by the edges of a discrete cycle ZNZN, to obtain a full description of their spectra and of the shapes of their eigenfunctions, as... 

    A 3D BEM model for liquid sloshing in baffled tanks

    , Article International Journal for Numerical Methods in Engineering ; Volume 76, Issue 9 , June , 2008 , Pages 1419-1433 ; 00295981 (ISSN) Dehghani Firouz Abadi, R ; Haddadpour, H ; Noorain, M. A ; Ghasemi, M ; Sharif University of Technology
    2008
    Abstract
    The present work aims at developing a boundary element method to determine the natural frequencies and mode shapes of liquid sloshing in 3D baffled tanks with arbitrary geometries. Green's theorem is used with the governing equation of potential flow and the walls and free surface boundary conditions are applied. A zoning method is introduced to model arbitrary arrangements of baffles. By discretizing the flow boundaries to quadrilateral elements, the boundary integral equation is formulated into a general matrix eigenvalue problem. The governing equations are then reduced to a more efficient form that is merely represented in terms of the potential values of the free surface nodes, which...