Loading...
Search for: eigenvalues
0.012 seconds
Total 231 records

    Numerical modeling of shear band propagation in porous plastic dilatant materials by XFEM

    , Article Theoretical and Applied Fracture Mechanics ; Volume 95 , 2018 , Pages 164-176 ; 01678442 (ISSN) Mikaeili, E ; Liu, P ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This paper studies mixed-mode shear band propagation behaviors in porous plastic dilatant materials by the extended finite element method (XFEM). The Drucker-Prager elastoplastic model is combined with the strong discontinuity method to simulate the dilatant shear band. First, the dissipative nature of the localized area with displacement jump is integrated into the constitutive model by introducing a cohesive law. A new contribution lies that the yielding function is modified in the localized region to calculate the cohesive traction within the framework of the XFEM. The shear band propagation direction is determined by the singularity of the acoustic tensor and the corresponding... 

    Complex modal analysis and coupled electromechanical simulation of energy harvesting piezoelectric laminated beams

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; 2018 ; 09544062 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    In this paper, coupled electromechanical behavior of a vibrational energy harvesting system composed of a unimorph piezoelectric laminated beam with a large attached tip mass is investigated. To achieve this goal, first the electromechanically coupled partial differential equations governing the lateral displacement and output voltage of the harvester are extracted through exploiting the Hamilton’s principle. Considering vibration damping due to mechanical to electrical energy conversion, a complex modal analysis is performed to extract the complex eigenfrequencies and eigenfunctions of the system. Furthermore, an exact analytical solution is presented for the system response to the harmonic... 

    Robust stability analysis of uncertain multiorder fractional systems: young and Jensen inequalities approach

    , Article International Journal of Robust and Nonlinear Control ; Volume 28, Issue 4 , March , 2018 , Pages 1127-1144 ; 10498923 (ISSN) Taghavian, H ; Tavazoei, M. S ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Robust stability analysis of multiorder fractional linear time-invariant systems is studied in this paper. In the present study, first, conservative stability boundaries with respect to the eigenvalues of a dynamic matrix for this kind of systems are found by using Young and Jensen inequalities. Then, considering uncertainty on the dynamic matrix, fractional orders, and fractional derivative coefficients, some sufficient conditions are derived for the stability analysis of uncertain multiorder fractional systems. Numerical examples are presented to confirm the obtained analytical results. Copyright © 2017 John Wiley & Sons, Ltd  

    Dynamic response of thin plates on time-varying elastic point supports

    , Article Structural Engineering and Mechanics ; Volume 62, Issue 4 , 2017 , Pages 431-441 ; 12254568 (ISSN) Foyouzat, M. A ; Estekanchia, H. E ; Sharif University of Technology
    Techno Press  2017
    Abstract
    In this article, an analytical-numerical approach is presented in order to determine the dynamic response of thin plates resting on multiple elastic point supports with time-varying stiffness. The proposed method is essentially based on transforming a familiar governing partial differential equation into a new solvable system of linear ordinary differential equations. When dealing with time-invariant stiffness, the solution of this system of equations leads to a symmetric matrix, whose eigenvalues determine the natural frequencies of the point-supported plate. Moreover, this method proves to be applicable for any plate configuration with any type of boundary condition. The results, where... 

    Enhanced finite difference scheme for the neutron diffusion equation using the importance function

    , Article Annals of Nuclear Energy ; Volume 96 , 2016 , Pages 412-421 ; 03064549 (ISSN) Vagheian, M ; Vosoughi, N ; Gharib, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Mesh point positions in Finite Difference Method (FDM) of discretization for the neutron diffusion equation can remarkably affect the averaged neutron fluxes as well as the effective multiplication factor. In this study, by aid of improving the mesh point positions, an enhanced finite difference scheme for the neutron diffusion equation is proposed based on the neutron importance function. In order to determine the neutron importance function, the adjoint (backward) neutron diffusion calculations are performed in the same procedure as for the forward calculations. Considering the neutron importance function, the mesh points can be improved through the entire reactor core. Accordingly, in... 

    Design and implementation of an FPGA-based real-time simulator for H-bridge converter

    , Article 7th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2016, 16 February 2016 through 18 February 2016 ; 2016 , Pages 504-510 ; 9781509003754 (ISBN) Rezaei Larijani, M ; Zolghadri, M. R ; Shahbazi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This paper presents a methodology for implementing of the mathematical model of H-Bridge converter in an FPGA-based Real-Time simulator. Furthermore, it introduces a new method for choosing parameters of the Associate Discrete Circuit (ADC) model of semiconductor switches. The ADC-based model allows obtaining a fixed topology irrespective of switches states for the power electronic converters in the digital simulation. Backward-Euler based discretized state space matrix (SSM) of the circuit used for ADC parameter. Choosing appropriate switch parameter is based on 1) reducing the distance of SSM eigenvalues from origin in z-Plane to reduce settling-Time of system response; and 2) reducing the... 

    Eigenvalue estimation of the exponentially windowed sample covariance matrices

    , Article IEEE Transactions on Information Theory ; Volume 62, Issue 7 , 2016 , Pages 4300-4311 ; 00189448 (ISSN) Yazdian, E ; Gazor, S ; Bastani, M. H ; Sharifitabar, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this paper, we consider an exponentially windowed sample covariance matrix (EWSCM) and propose an improved estimator for its eigenvalues. We use new advances in random matrix theory, which describe the limiting spectral distribution of the large dimensional doubly correlated Wishart matrices to find the support and distribution of the eigenvalues of the EWSCM. We then employ the complex integration and residue theorem to design an estimator for the eigenvalues, which satisfies the cluster separability condition, assuming that the eigenvalue multiplicities are known. We show that the proposed estimator is consistent in the asymptotic regime and has good performance in finite sample size... 

    Free vibration analysis of a beam with an intermediate sliding connection joined by a mass-spring system

    , Article JVC/Journal of Vibration and Control ; Volume 22, Issue 4 , 2016 , Pages 955-964 ; 10775463 (ISSN) Hozhabrossadati, S. M ; Aftabi Sani, A ; Mofid, M ; Sharif University of Technology
    SAGE Publications Inc  2016
    Abstract
    In the free vibration analysis of beams, the inclusion of an intermediate sliding connection with an attached mass-spring system has not been yet treated. The present paper studies the free vibrations of uniform Euler-Bernoulli beams with an intermediate sliding connection and joined by a mass-spring system. Two different types of beams are considered. The Type 1 is attached with a single-degree-of-freedom mass-spring system and the Type 2 is attached with a two-degree-of-freedom mass-spring system. The ends of both beams are elastically restrained against rotation and translation. First, the eigenvalue problems including differential equations and boundary conditions are introduced. Then,... 

    Direct synthesis of fixed-order h∞ controllers

    , Article IEEE Transactions on Automatic Control ; Volume 60, Issue 10 , July , 2015 , Pages 2704-2709 ; 00189286 (ISSN) Babazadeh, M ; Nobakhti, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This technical note considers the fixed-order H∞ output feedback control design problem for linear time invariant (LTI)systems. The objective is to design a fixed-order controller with guaranteed stability and closed-loop H∞ performance. This problem is NP-hard due to the non-convex rank constraint which appears in the formulation. We propose an algorithm for non-iterative direct synthesis (NODS) of reduced order robust controllers. NODS entails initial computation of two positive-definite matrices via full-order convex LMI conditions. These are then utilized by appropriate eigenvalue decomposition to directly obtain a suboptimal convex formulation for the fixed-order controller  

    Galerkin and Generalized Least Squares finite element: A comparative study for multi-group diffusion solvers

    , Article Progress in Nuclear Energy ; Volume 85 , 2015 , Pages 473-490 ; 01491970 (ISSN) Hosseini, S. A ; Saadatian Derakhshandeh, F ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract In this paper, the solution of multi-group neutron/adjoint equation using Finite Element Method (FEM) for hexagonal and rectangular reactor cores is reported. The spatial discretization of the neutron diffusion equation is performed based on two different Finite Element Methods (FEMs) using unstructured triangular elements generated by Gambit software. Calculations are performed using Galerkin and Generalized Least Squares FEMs; based on which results are compared. Using the power iteration method for the neutron and adjoint calculations, the neutron and adjoint flux distributions with the corresponding eigenvalues are obtained. The results are then validated against the valid... 

    An exact method for the extraction of effective bulk and surface parameters of periodic artificial media

    , Article IEEE Transactions on Antennas and Propagation ; Volume 63, Issue 6 , 2015 , Pages 2521-2531 ; 0018926X (ISSN) Barzegar Parizi, S ; Rejaei, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    A new method is presented for the extraction of the bulk and surface parameters of a periodic artificial medium which uses the eigenvectors of the generalized transfer matrix of a unit layer. These eigenvectors correspond to the Bloch modes of the periodic structure. The eigenvector related to the propagating Bloch mode directly yields an expression for the effective, intrinsic wave impedance of the medium. Moreover, the interface between the artificial material and a surrounding, conventional (dielectric) region is described by an interface impedance matrix which accounts for the excitation of higher order, nonpropagating Bloch modes at the interface. Although these modes do not propagate... 

    Denoising of ictal EEG data using semi-blind source separation methods based on time-frequency priors

    , Article IEEE Journal of Biomedical and Health Informatics ; Volume 19, Issue 3 , July , 2015 , Pages 839-847 ; 21682194 (ISSN) Hajipour Sardouie, S ; Shamsollahi, M. B ; Albera, L ; Merlet, I ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Removing muscle activity from ictal ElectroEncephaloGram (EEG) data is an essential preprocessing step in diagnosis and study of epileptic disorders. Indeed, at the very beginning of seizures, ictal EEG has a low amplitude and its morphology in the time domain is quite similar to muscular activity. Contrary to the time domain, ictal signals have specific characteristics in the time-frequency domain. In this paper, we use the time-frequency signature of ictal discharges as a priori information on the sources of interest. To extract the time-frequency signature of ictal sources, we use the Canonical Correlation Analysis (CCA) method. Then, we propose two time-frequency based semi-blind source... 

    Optimal pinning controllability of complex networks: Dependence on network structure

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 91, Issue 1 , January , 2015 ; 15393755 (ISSN) Jalili, M ; Askari Sichani, O ; Yu, X ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    Controlling networked structures has many applications in science and engineering. In this paper, we consider the problem of pinning control (pinning the dynamics into the reference state), and optimally placing the driver nodes, i.e., the nodes to which the control signal is fed. Considering the local controllability concept, a metric based on the eigenvalues of the Laplacian matrix is taken into account as a measure of controllability. We show that the proposed optimal placement strategy considerably outperforms heuristic methods including choosing hub nodes with high degree or betweenness centrality as drivers. We also study properties of optimal drivers in terms of various centrality... 

    Dynamic response of a non-uniform Timoshenko beam, subjected to moving mass

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 229, Issue 14 , October , 2015 , Pages 2499-2513 ; 09544062 (ISSN) Roshandel, D ; Mofid, M ; Ghannadiasl, A ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this article, the dynamic response of a non-uniform Timoshenko beam acted upon by a moving mass is extensively investigated. To this end, the eigenfunction expansion method is adapted to the problem, employing the natural mode shapes of a uniform Timoshenko beam. Moreover, the orthonormal polynomial series expansion method is successfully applied to the coupled set of governing differential equations pertaining to the dynamic behavior of non-uniform Timoshenko beam actuated by a moving mass. Some numerical examples are solved in which the excellent agreement of the two presented methods is illustrated  

    Modal analysis of the dynamic response of Timoshenko beam under moving mass

    , Article Scientia Iranica ; Volume 22, Issue 2 , 2015 , Pages 331-344 ; 10263098 (ISSN) Roshandel, D ; Mofid, M ; Ghannadiasl, A ; Sharif University of Technology
    Sharif University of Technology  2015
    Abstract
    In this study, the dynamic response of a Timoshenko beam under moving mass is investigated. To this end, vectorial form orthogonality property of the Timoshenko beam free vibration modes is applied to the EEM (Eigenfunction Expansion Method). The implication of the vectorial form series and an appropriate inner product of mode shapes in combination are focused for a beam with arbitrary boundary conditions. Consequently, significant simplifications and efficacy in the utilization of the EEM in eliminating the spatial domain is achieved. In order to comprise validation, the present study is compared with the DET (Discrete Element Technique) and the RKPM (Reproducing Kernel Particle Method)  

    Stability of linear dynamic systems over the packet erasure channel: A co-design approach

    , Article International Journal of Control ; Volume 88, Issue 12 , May , 2015 , Pages 2488-2498 ; 00207179 (ISSN) Farhadi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    This paper is concerned with the stability of linear time-invariant dynamic systems over the packet erasure channel subject to minimum bit rate constraint when an encoder and a decoder are unaware of the control signal. This assumption results in co-designing the encoder, decoder and controller. The encoder, decoder, controller and conditions relating transmission rate to packet erasure probability and eigenvalues of the system matrix A are presented for almost sure asymptotic stability of linear time-invariant dynamic systems over the packet erasure channel with feedback acknowledgment. When the eigenvalues of the system matrix A are real valued, it is shown that the obtained condition for... 

    Interictal EEG noise cancellation: GEVD and DSS based approaches versus ICA and DCCA based methods

    , Article IRBM ; Volume 36, Issue 1 , 2015 , Pages 20-32 ; 19590318 (ISSN) Hajipour Sardouie, S ; Shamsollahi, M. B ; Albera, L ; Merlet, I ; Sharif University of Technology
    Elsevier Masson SAS  2015
    Abstract
    Denoising is an important preprocessing stage in some ElectroEncephaloGraphy (EEG) applications. For this purpose, Blind Source Separation (BSS) methods, such as Independent Component Analysis (ICA) and Decorrelated and Colored Component Analysis (DCCA), are commonly used. Although ICA and DCCA-based methods are powerful tools to extract sources of interest, the procedure of eliminating the effect of sources of non-interest is usually manual. It should be noted that some methods for automatic selection of artifact sources after BSS methods exist, although they imply a training supervised step. On the other hand, in cases where there are some a prioriinformation about the subspace of... 

    A real-time, low-power implementation for high-resolution eigenvalue-based spectrum sensing

    , Article Analog Integrated Circuits and Signal Processing ; Volume 77, Issue 3 , December , 2013 , Pages 437-447 ; 09251030 (ISSN) Safavi, S. M ; Shabany, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, a novel multiple antenna, high-resolution eigenvalue-based spectrum sensing algorithm based on the FFT of the received signal is introduced. The proposed platform overcomes the SNR wall problem in the conventional energy detection (ED) algorithm, enabling the detection of the weak signals at -10 dB SNR. Moreover, the utilization of FFT for the input signal channelization provides a simple, low-power design for a high-resolution spectrum sensing regime. A real-time, low-area, and low-power VLSI architecture is also developed for the algorithm, which is implemented in a 0.18 μm CMOS technology. The implemented design is the first eigenvalue-based detection (EBD) architecture... 

    A new orthonormal polynomial series expansion method in vibration analysis of thin beams with non-uniform thickness

    , Article Applied Mathematical Modelling ; Volume 37, Issue 18-19 , 2013 , Pages 8543-8556 ; 0307904X (ISSN) Ebrahimzadeh Hassanabadi, M ; Nikkhoo, A ; Vaseghi Amiri, J ; Mehri, B ; Sharif University of Technology
    2013
    Abstract
    In this article, OPSEM (Orthonormal Polynomial Series Expansion Method) is developed as a new computational approach for the evaluation of thin beams of variable thickness transverse vibration. Capability of the OPSEM in assessing the free vibration frequencies and mode shapes of an Euler-Bernoulli beam with varying thickness is discussed. Multispan continuous beams with various classical boundary conditions are included. Contribution of BOPs (Basic Orthonormal Polynomials) in capturing the beam vibrations is also illustrated in numerical examples to give a quantitative measure of convergence rate. Furthermore, OPSEM is adopted for the forced vibration of a thin beam caused by a moving mass.... 

    MIMO radar beamforming using orthogonal decomposition of correlation matrix

    , Article Circuits, Systems, and Signal Processing ; Volume 32, Issue 4 , 2013 , Pages 1791-1809 ; 0278081X (ISSN) Shadi, K ; Behnia, F ; Sharif University of Technology
    2013
    Abstract
    MIMO radar is the next generation radar which transmits arbitrary waveforms at each one of its apertures. It has been shown that the design of waveforms for MIMO radars in order to synthesize a desired spatial beampattern is mapped into a waveform correlation matrix R design in the narrowband case. As of now, given a desired beampattern or estimated locations information of targets, calculating R has been modeled as an optimization problem like semi-definite programming. Also, in some special cases like rectangular beampattern, closed-form solutions for R has been proposed. In this paper, we introduce a fast algorithm which is capable of designing R in order to achieve more arbitrary...