Loading...
Search for: elastic-moduli
0.006 seconds
Total 146 records

    Modeling of stiffening and strengthening in nano-layered silicate/epoxy

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 30, Issue 1 , 2017 , Pages 93-100 ; 17281431 (ISSN) Marouf, B. T ; Pearson, R. A ; Bagheri, R ; Sharif University of Technology
    Abstract
    The aim of this paper is to investigate adhesion property between nano-layered filler and the polymer matrix using a combination of experimental and micromechanical models as well as the changes in yield strength and stiffness of a layered silicate-filled epoxy nanocomposite. The results indicate that addition of intercalated layered silicate particles increased Young's modulus and yield strength of the epoxy resin, although the increases in stiffness and yield strength are modest, 30% and 4%, respectively. In addition, experimental results were compared with predictive stiffening and strengthening models. The rule of mixtures provides an upper bound for the modulus in these materials, while... 

    Development of an accurate finite element model for N-layer MR-laminated beams using a layerwise theory

    , Article Mechanics of Advanced Materials and Structures ; Volume 25, Issue 13 , 2018 , Pages 1148-1155 ; 15376494 (ISSN) Momeni, S ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Abstract
    Laminated composite beams incorporated with magneto-rheological fluid are being used in variety of critical applications. An N-layer magneto-rheological-laminated beam based on layerwise theory has been developed to study the dynamic characteristics. For simulation purpose, an MR-laminated beam with five layers is considered in which two layers filled with magneto-rheological and three layers are made of composite materials. The results of simulations are compared with existing layerwise, first-order shear-deformation theory and experimental tests where it shows the accuracy and functionality of the present model. The complex shear modulus of magneto-rheological fluid has been determined... 

    Magnetron-sputtered TixNy thin films applied on titanium-based alloys for biomedical applications: Composition-microstructure-property relationships

    , Article Surface and Coatings Technology ; Volume 349 , 2018 , Pages 251-259 ; 02578972 (ISSN) Nemati, A ; Saghafi, M ; Khamseh, S ; Alibakhshi, E ; Zarrintaj, P ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Progress in tissue engineering and regenerative medicine necessitates the use of novel materials with promising bio-surface for biomedical applications. In this work, TixNy thin films are applied on biological TC4 substrates in a mixed atmosphere of Ar and N2 via magnetron sputtering system for the protection of TC4 alloy. The effects of N/Ti ratio on the phase structure, growth orientation, contact angle, and the mechanical and corrosion performances of thin films are discussed by implementation of composition-microstructure-property interrelationships. The phase structure of TixNy thin films is changed from amorphous-like to single phase Ti2N structure with increasing N/Ti ratio. In the... 

    Empirical modeling of mechanical properties of modified collagen/chitosan membrane by response surface methodology

    , Article 24th Iranian Conference on Biomedical Engineering and 2017 2nd International Iranian Conference on Biomedical Engineering, ICBME 2017, 30 November 2017 through 1 December 2017 ; 2018 ; 9781538636091 (ISBN) Ansarizadeh, M ; Mashayekhan, S ; Saadatmand, M ; Khashabi, E ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this study, collagen/chitosan membrane used for guided bone regeneration (GBR) was modified. Collagen and chitosan are routinely used in GBR membrane fabrication. In addition advanced platelet rich fibrin (A-PRF) is a promising substitution for fabricating membrane in dental surgery. Herein, acid soluble collagen from calf skin was extracted and characterized. The combination of A-PRF with collagen/chitosan membrane was investigated in this study. FTIR analysis revealed that chemical crosslinking using EDC/NHS was occurred. The morphology of collagen/chitosan membrane in a gradient manner of chitosan was assessed via SEM images. Response surface methodology (RSM) was used to... 

    Effective shear modulus of solids reinforced by randomly oriented- / aligned-elliptic multi-coated nanofibers in micropolar elasticity

    , Article Composites Part B: Engineering ; Volume 143 , 15 June , 2018 , Pages 197-206 ; 13598368 (ISSN) Alemi, B ; Shodja, H. M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Accurate estimation of the in-plane shear modulus of solids reinforced by nano-/micro-size elliptical multi-coated fibers is the focus of this paper. It is well-known that at the scales comparable to the nanoscopic length scales of the material, traditional theory of elasticity ceases to hold and, moreover, due to lack of consideration of such length scales has an innate weakness of sensing the size effect. Therefore, it is proposed to formulate and calculate the effective shear modulus of the nano-/micro-composite within micropolar theory which introduces two material characteristic lengths into the field equations. For this purpose, Mori-Tanaka theory is extended to treat nested... 

    Performance evaluation of a new nanocomposite polymer gel for water shutoff in petroleum reservoirs

    , Article Journal of Dispersion Science and Technology ; 2018 ; 01932691 (ISSN) Asadizadeh, S ; Ayatollahi, S ; ZareNezhad, B ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    A new polymer gel nanocomposite is fabricated for excess water production control (water shut off) in petroleum reservoirs and its rheological behavior is evaluated in the presence of sea water and formation water at the temperature of 100 °C. It is shown that at a high salinity without using SiO2 nanoparticles, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water are 12.5 Pa and 9.8 Pa respectively. However by incorporation of SiO2 nanoparticles in the polymer gel matrix, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water can be improved to 13.56 Pa and 11.57 Pa respectively, which is quite interesting... 

    Pressure effect on the mechanical and electronic properties of B3N3: a first-principle study

    , Article Physica C: Superconductivity and its Applications ; Volume 548 , 15 May , 2018 , Pages 50-54 ; 09214534 (ISSN) Bagheri, M ; Faez, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this paper, we perform Self-Consistent Field (SCF) energy calculation of Tetragonal B3N3 in the homogenous pressure range of −30 GPa to +160 GPa. Also, we study mechanical and electronic properties of this compound as a potential candidate for a conventional phonon-mediated superconductor with a high transition temperature. To do this, the volume changes of B3N3, and its bulk modulus, due to applying pressure in the range of −30 GPa to +160 GPa are calculated and analyzed. The calculated Bulk modulus of B3N3 at 230 GPa in the relaxed condition indicates the strength of bonds and its low compressibility. We calculated and analyzed the electronic effective mass in both XM and MA directions... 

    Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles

    , Article Journal of Cleaner Production ; Volume 183 , 2018 , Pages 1197-1206 ; 09596526 (ISSN) Hosseini, A ; Vossoughi, M ; Mahmoodi, N. M ; Sadrzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, novel chitosan/poly(vinyl alcohol) (PVA)/SiO2 nanocomposite ENMs were prepared to improve the mechanical strength and permeation properties of ENMs. The effect of various concentrations of SiO2 in the spinning solution (0, 0.5, 1.0 and 2.0 wt %) on the morphology, fiber diameter, porosity, thermomechanical properties, and permeability of the synthesized membranes was investigated. The prepared affinity membranes were utilized for the removal of dye from colored wastewater. Incorporating SiO2, as a reinforcing agent, was found to increase the compaction resistance of the nanocomposite ENMs. With the addition of 0.5 wt % of SiO2, the Young's modulus of the prepared membranes... 

    Impact of hydraulic hysteresis on the small strain shear modulus of unsaturated sand

    , Article Soils and Foundations ; Volume 58, Issue 2 , 2018 , Pages 344-354 ; 00380806 (ISSN) Khosravi, A ; Shahbazan, P ; Pak, A ; Sharif University of Technology
    Japanese Geotechnical Society  2018
    Abstract
    The results of previous studies on silt and clay indicated that variations in the small strain shear modulus, Gmax, during hydraulic hysteresis had a non-linear increasing trend with matric suction, with greater values upon wetting. However, due to differences in material properties and inter-particle forces, a different behavior is expected for the Gmax of unsaturated sand. Although considerable research has been devoted in recent years to characterizing the behavior of the Gmax of sand during drying, less attention has been paid to the effect of hydraulic hysteresis on Gmax and its variations during wetting. In the study presented herein, an effective stress-based semi-empirical model was... 

    Vibration characteristics of laminated composite beams with magnetorheological layer using layerwise theory

    , Article Mechanics of Advanced Materials and Structures ; Volume 25, Issue 3 , 2018 , Pages 202-211 ; 15376494 (ISSN) Naji, J ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Vibration characteristics of laminated composite beams with magnetorheological (MR) layer are investigated using layerwise theory. In most studies, shear strain across the thickness of MR layer has been considered as a constant value, which does not precisely describe the shear strain. In this study, layerwise theory is employed to develop a finite element formulation to investigate MR-laminated beams. Experimental tests under different magnetic fields are carried out to verify the numerical results. Layerwise numerical results are compared with the experimental results and other theories. An empirical expression for complex shear modulus is presented. The effects of MR layer thickness on... 

    Effects of permeability and cementation on the pattern of hydraulically induced fractures in oil sands

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 31, Issue 2 , 2009 , Pages 149-162 ; 15567036 (ISSN) Pak, A ; Chan, D. H ; Sharif University of Technology
    2009
    Abstract
    It is generally accepted that a hydraulically induced fracture in the reservoir is approximately a plane fracture perpendicular to the direction of the in situ minor principal stress. However, field observations, in some cases, do not support the above traditional assumption. This is especially true when hydraulic fracturing technique is applied to the uncemented porous materials such as oil sands. In this article, the pattern of hydraulically induced fractures in oil sands and other geomaterials is discussed. Field observations and experimental investigation results are combined with the outcomes of the numerical simulations of hydro-fracturing in oil sands conducted by the authors to... 

    A new model for the effect of grain size on the elastic modulus of nanocrystalline materials

    , Article Materials Science- Poland ; Volume 27, Issue 1 , 2009 , Pages 279-285 ; 01371339 (ISSN) Ali Shafiei, M ; Sharif University of Technology
    2009
    Abstract
    A new model is developed for the structure of nanocrystalline materials. Based on the developed model, a new approach for investigating the effect of grain size on the elastic moduli of nanocrystalline materials is introduced. The predictions of the model are strongly correlated with the experimental results reported in the existing literature  

    Investigation of properties of polyethylene/clay nanocomposites prepared by new in situ ziegler-natta catalyst

    , Article Materials and Design ; Volume 30, Issue 7 , 2009 , Pages 2309-2315 ; 02641275 (ISSN) Nikkhah, S. J ; Ramazani Saadat Abadi, A ; Baniasadi, H ; Tavakolzadeh, F ; Sharif University of Technology
    2009
    Abstract
    This paper is devoted to investigation of morphological and physical-mechanical properties of polyethylene (PE)/clay nanocomposites prepared via in situ polymerization method using bi-supported Ziegler-Natta catalyst. Bentonite type clay and MgCl2 (ethoxide type) were used as the support of TiCl4. Catalyst support and polymerization process have been done in slurry phase using Triisobutylaluminum as the co-catalyst. The microstructure of the nanocomposites was examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD and TEM indicated that almost fully exfoliated PE/clay nanocomposites were produced successfully using this method. According to permeability... 

    Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites

    , Article International Journal of Solids and Structures ; Volume 46, Issue 16 , 2009 , Pages 2978-2987 ; 00207683 (ISSN) Haftbaradaran, H ; Mohammadi Shodja, H ; Sharif University of Technology
    2009
    Abstract
    It is well-known that classical continuum theory has certain deficiencies in predicting material's behavior at the micro- and nanoscales, where the size effect is not negligible. Higher order continuum theories introduce new material constants into the formulation, making the interpretation of the size effect possible. One famous version of these theories is the couple stress theory, invoked to study the anti-plane problems of the elliptic inhomogeneities and inclusions in the present work. The formulation in elliptic coordinates leads to an exact series solution involving Mathieu functions. Subsequently, the elastic fields of a single inhomogeneity in conjunction with the Mori-Tanaka theory... 

    Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure

    , Article Journal of Biomechanics ; Volume 42, Issue 10 , 2009 , Pages 1560-1565 ; 00219290 (ISSN) Ghanbari, J ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    We have used a hierarchical multiscale modeling scheme for the analysis of cortical bone considering it as a nanocomposite. This scheme consists of definition of two boundary value problems, one for macroscale, and another for microscale. The coupling between these scales is done by using the homogenization technique. At every material point in which the constitutive model is needed, a microscale boundary value problem is defined using a macroscopic kinematical quantity and solved. Using the described scheme, we have studied elastic properties of cortical bone considering its nanoscale microstructural constituents with various mineral volume fractions. Since the microstructure of bone... 

    Finite anti-plane shear deformation of nonlinear elastic composites reinforced with elliptic fibers

    , Article Mechanics of Materials ; Volume 41, Issue 7 , 2009 , Pages 868-877 ; 01676636 (ISSN) Avazmohammadi, R ; Naghdabadi, R ; Weng, G. J ; Sharif University of Technology
    2009
    Abstract
    Exact solutions for nonlinear composites undergoing finite deformation are in general difficult to find. In this article, such a solution is obtained for a two-phase composite reinforced with elliptic fibers under anti-plane shear. The analysis is based on the theory of hyperelasticity with both phases characterized by incompressible neo-Hookean strain energies, and is carried out when the composite elliptic cylinder assemblage carries a confocal microgeometry. The problem for a class of compressible neo-Hookean materials is also studied. The analytical results for the stress and strain distributions are verified with finite element calculations where excellent agreement is found. We then... 

    Propagation and localization of acoustic and elastic waves in heterogeneous materials: Renormalization group analysis and numerical simulations

    , Article Acta Mechanica ; Volume 205, Issue 1-4 , 2009 , Pages 197-222 ; 00015970 (ISSN) Sahimi, M ; Rahimi Tabar, M. R ; Bahraminasab, A ; Sepehrinia, R ; Vaez Allaei, S. M ; Sharif University of Technology
    2009
    Abstract
    We describe and discuss the recent progress in the study of propagation and localization of acoustic and elastic waves in heterogeneous media. The heterogeneity is represented by a spatial distribution of the local elastic moduli. Both randomly distributed elastic moduli as well as those with long-range correlations with a nondecaying power-law correlation function, are considered. The motivation for the study is twofold. One is that recent analysis of experimental data for the spatial distribution of the elastic moduli of rock indicated that the distribution is characterized by the type of long-range correlations that we consider in this study. The second motivation for the problem is to... 

    Combination of water head control and axis translation techniques in new unsaturated cyclic simple shear tests

    , Article Soil Dynamics and Earthquake Engineering ; Volume 126 , 2019 ; 02677261 (ISSN) Ahmadinezhad, A ; Jafarzadeh, F ; Sadeghi, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A cyclic simple shear device was modified for testing coarse-grained soils at unsaturated conditions. A combined methodology of controlling suction for the practical range of coarse-grained soil water retention curves was adopted. Water head control method was used to accurately control suction within capillary and transition zones of such soils. The axis translation technique, on the other hand, was employed as a complementary approach to reach higher suction values within residual zone. In order to evaluate the performance of the new setup, independent cyclic tests were carried out at various initial suctions including all key points and zones along the primary drying path. The analyses of... 

    Optimizing tribological, tensile & in-vitro biofunctional properties of UHMWPE based nanocomposites with simultaneous incorporation of graphene nanoplatelets (GNP) & hydroxyapatite (HAp) via a facile approach for biomedical applications

    , Article Composites Part B: Engineering ; Volume 175 , 2019 ; 13598368 (ISSN) Mohseni Taromsari, S ; Salari, M ; Bagheri, R ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The present study focuses on simultaneous influence of graphene nanoplatelets (GNP) and hydroxyapatite (HAp) nanopowder on microstructural, wear, tensile and biofunctional behavior of UHMWPE based nanocomposites used in biomedical applications, with the aim to utilize GNP's mechanical strength and wear resistance, while benefitting from HAp's biocompatibility at the same time. 0.1, 0.5 and 1 wt% GNP with 10 wt% optimized concentration of HAp were added to the UHMWPE matrix through an easy two-step approach consisting of solvent mixing and ultrasonication in ethanol as a liquid media. The dried nanocomposite samples of powder were then hot pressed at an optimized temperature and pressure to... 

    Performance evaluation of a new nanocomposite polymer gel for water shutoff in petroleum reservoirs

    , Article Journal of Dispersion Science and Technology ; Volume 40, Issue 10 , 2019 , Pages 1479-1487 ; 01932691 (ISSN) Asadizadeh, S ; Ayatollahi, S ; ZareNezhad, B ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    A new polymer gel nanocomposite is fabricated for excess water production control (water shut off) in petroleum reservoirs and its rheological behavior is evaluated in the presence of sea water and formation water at the temperature of 100 °C. It is shown that at a high salinity without using SiO2 nanoparticles, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water are 12.5 Pa and 9.8 Pa respectively. However by incorporation of SiO2 nanoparticles in the polymer gel matrix, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water can be improved to 13.56 Pa and 11.57 Pa respectively, which is quite interesting...