Loading...
Search for: elastic-moduli
0.01 seconds
Total 146 records

    Sintering characterizations of Ag-nano film on silicon substrate

    , Article Advanced Materials Research ; Volume 829 , 2014 , Pages 342-346 ; ISSN: 10226680 ; ISBN: 9783037859070 Keikhaie, M ; Akbari, J ; Movahhedi, M. R ; Alemohammad, H ; Sharif University of Technology
    Abstract
    Nowadays, thin films have many applications in every field. So, in order to improve the performance of thin film devices, it is necessary to characterize their mechanical as well as electrical properties. In this research work we focus on the development of a model for the analysis of the mechanical and electrical properties of silver nanoparticles deposited on silicon substrates. The model consists of inter-particle diffusion modeling and finite element analysis. In this study, through the simulation of the sintering process, it is shown that how the geometry, density, and electrical resistance of the thin film layer are changed with sintering conditions. The model is also used to... 

    Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect

    , Article Journal of Applied Physics ; Vol. 115, issue. 17 , May , 2014 ; ISSN: 00218979 Nazemnezhad, R ; Shokrollahi, H ; Hosseini-Hashemi, S ; Sharif University of Technology
    Abstract
    In this study, sandwich beam model (SM) is proposed for free vibration analysis of bilayer graphene nanoribbons (BLGNRs) with interlayer shear effect. This model also takes into account the intralayer (in-plane) stretch of graphene nanoribbons. The molecular dynamics (MD) simulations using the software LAMMPS and Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential are done to validate the accuracy of the sandwich model results. The MD simulation results include the two first frequencies of cantilever BLGNRs with different lengths and two interlayer shear moduli, i.e., 0.25 and 4.6GPa. These two interlayer shear moduli, 0.25 and 4.6GPa, can be obtained by sliding a small... 

    Propagation and localization of acoustic and elastic waves in heterogeneous materials: Renormalization group analysis and numerical simulations

    , Article Acta Mechanica ; Volume 205, Issue 1-4 , 2009 , Pages 197-222 ; 00015970 (ISSN) Sahimi, M ; Rahimi Tabar, M. R ; Bahraminasab, A ; Sepehrinia, R ; Vaez Allaei, S. M ; Sharif University of Technology
    2009
    Abstract
    We describe and discuss the recent progress in the study of propagation and localization of acoustic and elastic waves in heterogeneous media. The heterogeneity is represented by a spatial distribution of the local elastic moduli. Both randomly distributed elastic moduli as well as those with long-range correlations with a nondecaying power-law correlation function, are considered. The motivation for the study is twofold. One is that recent analysis of experimental data for the spatial distribution of the elastic moduli of rock indicated that the distribution is characterized by the type of long-range correlations that we consider in this study. The second motivation for the problem is to... 

    Pressure effect on the mechanical and electronic properties of B3N3: a first-principle study

    , Article Physica C: Superconductivity and its Applications ; Volume 548 , 15 May , 2018 , Pages 50-54 ; 09214534 (ISSN) Bagheri, M ; Faez, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this paper, we perform Self-Consistent Field (SCF) energy calculation of Tetragonal B3N3 in the homogenous pressure range of −30 GPa to +160 GPa. Also, we study mechanical and electronic properties of this compound as a potential candidate for a conventional phonon-mediated superconductor with a high transition temperature. To do this, the volume changes of B3N3, and its bulk modulus, due to applying pressure in the range of −30 GPa to +160 GPa are calculated and analyzed. The calculated Bulk modulus of B3N3 at 230 GPa in the relaxed condition indicates the strength of bonds and its low compressibility. We calculated and analyzed the electronic effective mass in both XM and MA directions... 

    Preparation of highly rubber-toughened nylons

    , Article Iranian Polymer Journal (English Edition) ; Volume 16, Issue 7 , 2007 , Pages 459-468 ; 10261265 (ISSN) Bordbar, H ; Yousefi, A. A ; Ramezani saadatabadi, A ; Sharif University of Technology
    2007
    Abstract
    Nylon 6 and 66 were toughened with EPDM-g-MA and SEBS-g-MA and steadystate rheological behaviour of rubbers, nylons and their blends and mechanical properties of nylons and their rubber-toughened blends were investigated. The EPDM maleic grafting preparation was performed In the framework of this study where SEBS-g-MA was obtained from a commercial source. The results showed the ultratoughened SEBS-g-MA blends, whereas EPDM blends under the same blending conditions did not show a significant improvement in toughness. In case of EPDM toughened blends an average of some micrometers was observed for the dispersed EPDM particles. Impact and tensile properties of the toughened blend with 20% of... 

    Preparation and characteristics of epoxy/clay/B4C nanocomposite at high concentration of boron carbide for neutron shielding application

    , Article Radiation Physics and Chemistry ; Volume 141 , 2017 , Pages 223-228 ; 0969806X (ISSN) Kiani, M. A ; Ahmadi, S. J ; Outokesh, M ; Adeli, R ; Mohammadi, A ; Sharif University of Technology
    Abstract
    In this research, the characteristics of the prepared samples in epoxy matrix by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), as well as scanning electron microscope (SEM) are evaluated. Meanwhile, the obtained mechanical properties of the specimen are investigated. Thermogravimetric analysis (TGA) is also employed to evaluate the thermal degradation of manufactured nanocomposites. The thermal neutron absorption properties of nanocomposites containing 3 wt% of montmorillonite nanoclay (closite30B) have been studied experimentally, using an Am-Be point source. Mechanical tests reveal that the higher B4C concentrations, the more tensile strengths, but lower... 

    Porous shape memory dental implant by reactive sintering of TiH2–Ni-Urea mixture

    , Article Materials Science and Engineering C ; Volume 107 , 2020 Akbarinia, S ; Sadrnezhaad, S .K ; Hosseini, S. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    We produced bifurcated bone-like shape memory implant (BL-SMI) with desirable tooth-root fixation capability by compact-sintering of TiH2–Ni-urea mixture. The primary constituents of the porous product were Ni and Ti. We could adjust the pores' shape, size, and interconnectivity for favorite bone ingrowth by using urea as a space holder. Without urea, we obtained an average porosity of 0.30, and a mean void size of 100 μm. With 70 vol % urea, we got 62% interconnected pores of 400 μm average size. Aging allowed us to tune the austenite-martensite transformation temperatures towards the needed body tissue arouse. Differential scanning calorimetry measured the transformation temperatures.... 

    Poly(lactic acid)/coplasticized thermoplastic starch blend: Effect of plasticizer migration on rheological and mechanical properties

    , Article Polymers for Advanced Technologies ; Volume 30, Issue 4 , 2019 , Pages 839-851 ; 10427147 (ISSN) Esmaeili, M ; Pircheraghi, G ; Bagheri, R ; Altstädt, V ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    Polylactic acid (PLA) and thermoplastic starch (TPS) are known as bio-based and biodegradable thermoplastic polymers that can be used in different applications owing to their inherent physical and mechanical properties. In order to reduce the higher costs of PLA and tuning its physical and mechanical properties suitable for short life packaging applications, blending of PLA with the TPS, more economical biodegradable polymer, has been considered in academic and industrial researches. However, melt blending of PLA with TPS without compatibilization process caused some drawbacks such as coarsening morphology and declining mechanical properties and ductility because of thermodynamic... 

    Physical, morphological, and biological studies on PLA/nHA composite nanofibrous webs containing equisetum arvense herbal extract for bone tissue engineering

    , Article Journal of Applied Polymer Science ; Volume 134, Issue 39 , 2017 ; 00218995 (ISSN) Khakestani, M ; Jafari, S. H ; Zahedi, P ; Bagheri, R ; Hajiaghaee, R ; Sharif University of Technology
    Abstract
    A series of herbal extract incorporated into poly(lactic acid) (PLA) composite nanofibrous scaffolds were successfully prepared by using electrospinning technique. Equisetum arvense extract (EE) and nanohydroxyapatite (nHA) in different quantities were loaded into PLA solution to fabricate composite nanofibrous webs under various electrospinning conditions. Uniform nanofibers were obtained with an average diameter of 157 ± 47 nm in the case of those containing the herbal extract. Characterization of the webs was carried out by means of Fourier transform infrared (FTIR) spectroscopy, field emission-scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and... 

    Performance evaluation of a new nanocomposite polymer gel for water shutoff in petroleum reservoirs

    , Article Journal of Dispersion Science and Technology ; 2018 ; 01932691 (ISSN) Asadizadeh, S ; Ayatollahi, S ; ZareNezhad, B ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    A new polymer gel nanocomposite is fabricated for excess water production control (water shut off) in petroleum reservoirs and its rheological behavior is evaluated in the presence of sea water and formation water at the temperature of 100 °C. It is shown that at a high salinity without using SiO2 nanoparticles, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water are 12.5 Pa and 9.8 Pa respectively. However by incorporation of SiO2 nanoparticles in the polymer gel matrix, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water can be improved to 13.56 Pa and 11.57 Pa respectively, which is quite interesting... 

    Performance evaluation of a new nanocomposite polymer gel for water shutoff in petroleum reservoirs

    , Article Journal of Dispersion Science and Technology ; Volume 40, Issue 10 , 2019 , Pages 1479-1487 ; 01932691 (ISSN) Asadizadeh, S ; Ayatollahi, S ; ZareNezhad, B ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    A new polymer gel nanocomposite is fabricated for excess water production control (water shut off) in petroleum reservoirs and its rheological behavior is evaluated in the presence of sea water and formation water at the temperature of 100 °C. It is shown that at a high salinity without using SiO2 nanoparticles, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water are 12.5 Pa and 9.8 Pa respectively. However by incorporation of SiO2 nanoparticles in the polymer gel matrix, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water can be improved to 13.56 Pa and 11.57 Pa respectively, which is quite interesting... 

    Optimizing tribological, tensile & in-vitro biofunctional properties of UHMWPE based nanocomposites with simultaneous incorporation of graphene nanoplatelets (GNP) & hydroxyapatite (HAp) via a facile approach for biomedical applications

    , Article Composites Part B: Engineering ; Volume 175 , 2019 ; 13598368 (ISSN) Mohseni Taromsari, S ; Salari, M ; Bagheri, R ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The present study focuses on simultaneous influence of graphene nanoplatelets (GNP) and hydroxyapatite (HAp) nanopowder on microstructural, wear, tensile and biofunctional behavior of UHMWPE based nanocomposites used in biomedical applications, with the aim to utilize GNP's mechanical strength and wear resistance, while benefitting from HAp's biocompatibility at the same time. 0.1, 0.5 and 1 wt% GNP with 10 wt% optimized concentration of HAp were added to the UHMWPE matrix through an easy two-step approach consisting of solvent mixing and ultrasonication in ethanol as a liquid media. The dried nanocomposite samples of powder were then hot pressed at an optimized temperature and pressure to... 

    On the theoretical and molecular dynamic methods for natural frequencies of multilayer graphene nanosheets incorporating nonlocality and interlayer shear effects

    , Article Mechanics of Advanced Materials and Structures ; 2021 ; 15376494 (ISSN) Nikfar, M ; Taati, E ; Asghari, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    In this paper, a multiplate nonlocal shear model and molecular dynamic simulations are presented to investigate the effects of interlayer shear and nonlocality on the natural frequencies of multilayer graphene sheets (MLGSs). From one aspect in the optimal design of such structures, the interaction between graphene layers, which can significantly vary the static and dynamic behavior due to lack of solidity of layers stack, should be considered. On the other hand, it is requied that the nonlocality phenomenon which has an effective role in the mechanical analysis of nanostructures is taken into account. To this aim, the equation of motion along with corresponding boundary conditions is... 

    On the theoretical and molecular dynamic methods for natural frequencies of multilayer graphene nanosheets incorporating nonlocality and interlayer shear effects

    , Article Mechanics of Advanced Materials and Structures ; Volume 29, Issue 20 , 2022 , Pages 2873-2883 ; 15376494 (ISSN) Nikfar, M ; Taati, E ; Asghari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, a multiplate nonlocal shear model and molecular dynamic simulations are presented to investigate the effects of interlayer shear and nonlocality on the natural frequencies of multilayer graphene sheets (MLGSs). From one aspect in the optimal design of such structures, the interaction between graphene layers, which can significantly vary the static and dynamic behavior due to lack of solidity of layers stack, should be considered. On the other hand, it is requied that the nonlocality phenomenon which has an effective role in the mechanical analysis of nanostructures is taken into account. To this aim, the equation of motion along with corresponding boundary conditions is... 

    On the mechanical characteristics of graphene nanosheets: A fully nonlinear modified Morse model

    , Article Nanotechnology ; Volume 31, Issue 11 , 2020 Shoghmand Nazarloo, A ; Ahmadian, M ; Firoozbakhsh, K ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    In this paper, the mechanical properties of graphene nanosheets are evaluated based on the nonlinear modified Morse model. The interatomic interactions including stretching and bending of the covalent bonds between carbon atoms, are replaced by nonlinear extensional and torsional spring-like elements. The finite element method is implemented to analyze the model under different loading conditions and linear characteristics of the graphene structure including the Young's modulus, surface modulus, shear modulus and Poisson's ratio are evaluated for various geometries and chirality where these properties are shown to be size and aspect ratio dependent. It is also found that when the dimensions... 

    On a theorem of Ihara

    , Article Scientia Iranica ; Volume 12, Issue 1 , 2005 , Pages 1-9 ; 10263098 (ISSN) Rastegar, A ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    Let p be a prime number and let n be a positive integer prime to p. By an Ihara-result, one means the existence of an injection with torsion-free cokernel, from a full lattice, in the space of p-old modular forms, into a full lattice, in the space of all modular forms of level np. In this paper, Ihara-results are proven for genus two Siegel modular forms, Siegel-Jacobi forms and Hilbert modular forms. Ihara did the genus one case of elliptic modular forms [1]. A geometric formulation is proposed for the notion of p-old Siegel modular forms of genus two, using clarifying comments by R. Schmidt [2] and, then, following suggestions in an earlier paper [3] on how to prove Ihara results. The main... 

    Numerical study of material properties, residual stress and crack development in sintered silver nano-layers on silicon substrate

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 1037-1047 ; 10263098 (ISSN) Keikhaie, M ; Movahhedy, M. R ; Akbari, J ; Alemohammad, H ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    In order to improve the performance of thin film devices, it is necessary to characterize their mechanical, as well as electrical, properties. In this work, a model is developed for analysis of the mechanical and electrical properties and the prediction of residual stresses in thin films of silver nanoparticles deposited on silicon substrates. The model is based on inter-particle diffusion modeling and finite element analysis. Through simulation of the sintering process, it is shown how the geometry, density, and electrical resistance of the thin film layers are changed by sintering conditions. The model is also used to approximate the values of Young's modulus and the generated residual... 

    Numerical simulation of three-dimensional flow and analysis of filling process in compression resin transfer moulding

    , Article Composites Part A: Applied Science and Manufacturing ; Volume 37, Issue 9 , 2006 , Pages 1434-1450 ; 1359835X (ISSN) Shojaei, A ; Sharif University of Technology
    2006
    Abstract
    In compression resin transfer moulding (CRTM), resin flows inside a mould filled with fibrous reinforcement as a result of resin injection and mould compression. This process facilitates the resin flow through the fibrous reinforcement particularly for high fiber content parts. This paper presents the numerical simulation of filling process of CRTM in full three-dimensional domain. A mathematical model of three-dimensional resin flow inside the CRTM mould is presented. An effective elastic modulus is introduced for multi-layer preforms connecting the mould closing speed to deformation rate of individual layers. Control volume/finite element method (CV/FEM) is used and the numerical algorithm... 

    Numerical modeling of piles in sandy soils considering stress dependent modulus of elasticity

    , Article Computer Methods and Recent Advances in Geomechanics - Proceedings of the 14th Int. Conference of International Association for Computer Methods and Recent Advances in Geomechanics, IACMAG 2014, 22 September 2014 through 25 September 2014, Kyoto ; 2015 , Pages 973-977 ; 9781138001480 (ISBN) Ahmadi, M. M ; Abadi, S. M ; Sharif University of Technology
    Taylor and Francis - Balkema  2015
    Abstract
    Pile Foundations are used to transfer loads from superstructures to the underlying competent soil layers. Predicting pile bearing capacity is among the most interesting subjects for geotechnical engineers. In this study, a single pile is modeled in axisymmetric condition. The soil is considered to be a sandy soil. Then, results of the model were verified with a full scale pile load test performed by previous researchers. In order to take into consideration the real behavior of sandy soils, a variation of modulus of elasticity with respect to the changes in the mean effective stress was taken into account. The dependency of soil modulus to the mean effective stress makes the model more... 

    Numerical and analytical simulation of multilayer cellular scaffolds

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 42, Issue 5 , 2 May , 2020 Khanaki, H. R ; Rahmati, S ; Nikkhoo, M ; Haghpanahi, M ; Akbari, J ; Sharif University of Technology
    Springer  2020
    Abstract
    Due to the advent and maturity of the additive manufacturing technology, it is possible now to construct complex microstructures with unprecedented accuracy. In addition, to the influence of network unit cell types and porosities in recent years, researchers have studied the number of scaffold layers fabricated by additive manufacturing on mechanical properties. The objective of this paper is to assess the numerical and analytical simulations of the multilayer scaffolds. For this purpose, 54 different regular scaffolds with a unit cell composed of multilayer scaffolds were simulated under compressive loading and compared with the analytical relationships based on the Euler–Bernoulli and...