Loading...
Search for: elastic-moduli
0.011 seconds
Total 146 records

    Compressive modulus and deformation mechanisms of 3DG foams: Experimental investigation and multiscale modeling

    , Article Nanotechnology ; Volume 32, Issue 48 , 2021 ; 09574484 (ISSN) Mahdavi, S. M ; Adibnazari, S ; Del Monte, F ; Gutiérrez, M. C ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Due to the wide applications of three-dimensional graphene (3DG) foam in bio-sensors, stretchable electronics, and conductive polymer composites, predicting its mechanical behavior is of paramount importance. In this paper, a novel multiscale finite element model is proposed to predict the compressive modulus of 3DG foams with various densities. It considers the effects of pore size and structure and the thickness of graphene walls on 3DG foams' overall behavior. According to the scanning electron microscope images, a unit cell is selected in the microscale step to represent the incidental arrangement of graphene sheets in 3DG foams. After derivation of equivalent elastic constants of the... 

    Composites of rice husk/wheat straw with pMDI resin and polypropylene

    , Article Polymers and Polymer Composites ; Volume 15, Issue 8 , 2007 , Pages 619-626 ; 09673911 (ISSN) Frounchi, M ; Dadbin, S ; Jahanbakhsh, J ; Janat Alipour, M ; Sharif University of Technology
    Rapra Technology Ltd  2007
    Abstract
    The application of agricultural fibers for making particleboards has been studied in two types of composites: (i) type I particleboards were composites of wheat straw and rice husk fibers with polymeric methylene di-phenyl diisocyanate resin (pMDI) as a binder made by compression moulding; (ii) type II particleboards were composites of rice husk and polypropylene made by extrusion and injection moulding. In type I particleboards, the effects of varying the resin content and various combinations of wheat straw/rice husk fibers were investigated and characterised in terms of physical and mechanical properties of particle boards such as modulus of rupture, modulus of elasticity, compression... 

    Comparison of the experimental behavior of a shape memory alloy in compression and tension

    , Article 2003 ASME International Mechanical Engineering Congress, Washington, DC., 15 November 2003 through 21 November 2003 ; Volume 68 , 2003 , Pages 471-478 ; 07334230 (ISSN) Hesse, T ; Ghorashi, M ; Inman, D. J ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2003
    Abstract
    The concept of Shape Memory Alloy (SMA) has been a subject of extensive research in the recent few years. In many SMA applications, wire elements have been used in order to control structural specifications like shape and stiffness. Since a wire can only be subjected to tensile forces, the available theoretical models for SMA discuss only the tensile loading. The present paper is an endeavor to overcome this shortcoming. It gives experimental results for tension and compression tests on specimens (having different geometries) made of an identical shape memory alloy. The corresponding results are compared with each other. Using stress-strain diagrams, several important material properties are... 

    Combination of water head control and axis translation techniques in new unsaturated cyclic simple shear tests

    , Article Soil Dynamics and Earthquake Engineering ; Volume 126 , 2019 ; 02677261 (ISSN) Ahmadinezhad, A ; Jafarzadeh, F ; Sadeghi, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A cyclic simple shear device was modified for testing coarse-grained soils at unsaturated conditions. A combined methodology of controlling suction for the practical range of coarse-grained soil water retention curves was adopted. Water head control method was used to accurately control suction within capillary and transition zones of such soils. The axis translation technique, on the other hand, was employed as a complementary approach to reach higher suction values within residual zone. In order to evaluate the performance of the new setup, independent cyclic tests were carried out at various initial suctions including all key points and zones along the primary drying path. The analyses of... 

    Cold atmospheric plasma modification and electrical conductivity induction in gelatin/polyvinylidene fluoride nanofibers for neural tissue engineering

    , Article Artificial Organs ; Volume 46, Issue 8 , 2022 , Pages 1504-1521 ; 0160564X (ISSN) Sahrayi, H ; Hosseini, E ; Ramazani Saadatabadi, A ; Atyabi, S ; Bakhshandeh, H ; Mohamadali, M ; Aidun, A ; Farasati Far, B ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Background: This research follows some investigations through neural tissue engineering, including fabrication, surface treatment, and evaluation of novel self-stimuli conductive biocompatible and degradable nanocomposite scaffolds. Methods: Gelatin as a biobased material and polyvinylidene fluoride (PVDF) as a mechanical, electrical, and piezoelectric improvement agent were co-electrospun. In addition, polyaniline/graphene (PAG) nanoparticles were synthesized and added to gelatin solutions in different percentages to induce electrical conductivity. After obtaining optimum PAG percentage, cold atmospheric plasma (CAP) treatment was applied over the best samples by different plasma variable... 

    Clay-based electrospun nanofibrous membranes for colored wastewater treatment

    , Article Applied Clay Science ; Volume 168 , 2019 , Pages 77-86 ; 01691317 (ISSN) Hosseini, S. A ; Vossoughi, M ; Mahmoodi, N. M ; Sadrzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Novel montmorillonite (Mt) chitosan/poly(vinyl alcohol) (PVA) nanocomposite electrospun nanofibrous membranes (ENM) were prepared and utilized for the treatment of colored wastewater. The Mt. with different mass percentages (0, 1.0, 2.0 and 3.0 mass%) was added to the membrane structure, and its effect on morphology, pore size, porosity, mechanical strength, and permeation properties of ENM were investigated. The fabricated membranes were used as affinity membranes for dye removal with ultrafast permeating adsorption. The results showed that incorporating Mt. as a reinforcing agent improved the nanocomposite ENM resistance to compaction. Young's modulus for the prepared membranes increased... 

    Characterizing the effect of fines content on the small strain shear modulus of sand-silt mixtures during hydraulic hysteresis

    , Article 4th International Conference on Transportation Geotechnics, ICTG 2021, 23 May 2021 through 26 May 2021 ; Volume 165 , 2022 , Pages 837-849 ; 23662557 (ISSN); 9783030772338 (ISBN) Jebeli, M ; Mohsen Haeri, S ; Khosravi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Small strain shear modulus, Gmax, is one of the most important parameters for the characterization of the behavior of earth structures subjected to static or dynamic loading conditions. This research presents an experimental laboratory study on the effect of non-plastic fines content and hydraulic hysteresis on the Gmax of unsaturated sandy soils. In this regard, clean Firoozkuh No. 161 silica sand which is classified as poorly graded sand was mixed with different percentages of non-plastic Firoozkuh silt. A set of bender element tests were carried out using two modified triaxial devices. The modifications on these two apparatus were to add HAV ceramic discs for air–water control of... 

    Calculation of thermodynamic properties of Ni nanoclusters via selected equations of state based on molecular dynamics simulations

    , Article Solid State Communications ; Volume 151, Issue 14-15 , 2011 , Pages 965-970 ; 00381098 (ISSN) Akbarzadeh, H ; Abroshan, H ; Taherkhani, F ; Parsafar, G. A ; Sharif University of Technology
    2011
    Abstract
    We present an approach for constant-pressure molecular dynamics simulations. This approach is especially designed for finite systems, for which no periodic boundary condition applies. A molecular dynamics (MD) simulation for Ni nanoclusters is used to calculate their pressurevolumetemperature (pvT) data for the temperature range 200 K≤T≤400 K, and pressures up to 600 kbar. Isothermal sets of pvT data were generated by the simulation; each set was fitted by three equations of state (EoSs): Linear Isotherm Regularity-II (LIRII), BirchMurnaghan (BM), and EOS III. It is found that the MD data are satisfactorily reproduced by the EoSs with reasonable precision. Some features of the EoSs criteria,... 

    Biodegradable ionic liquids: effects of temperature, alkyl side-chain length, and anion on the thermodynamic properties and interaction energies as determined by molecular dynamics simulations coupled with ab initio calculations

    , Article Industrial and Engineering Chemistry Research ; Volume 54, Issue 46 , November , 2015 , Pages 11678-11700 ; 08885885 (ISSN) Fakhraee, M ; Gholami, M. R ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    The effects of incorporating the ester functional group (-C=OO-) into the side chain of the 1-alkyl-3-methylimidazolium cation ([C1COOCnC1im]+, n = 1, 2, 4) paired with [Br]-, [NO3]-, [BF4]-, [PF6]-, [TfO]-, and [Tf2N]- anions on the various thermodynamic properties and interaction energies of these biodegradable ionic liquids (ILs) were investigated by means of molecular dynamics (MD) simulations combined with ab initio calculations in the temperature range of 298-550 K. Excluding the simulated density, the highest values of the volumetric properties such as molar volume, isobaric expansion coefficient, and isothermal compressibility coefficient can be attributed to the largest cation... 

    Bauschinger effect investigation of an aluminum alloy, and its application in autofrettaged and compound tubes

    , Article 2007 ASME Pressure Vessels and Piping Conference, PVP 2007, San Antonio, TX, 22 July 2007 through 26 July 2007 ; Volume 6 , 2008 , Pages 629-637 ; 0277027X (ISSN); 0791842843 (ISBN); 9780791842843 (ISBN) Mohammadi, M ; Farrahi, G. H ; Hoseini, S. H ; Sharif University of Technology
    2008
    Abstract
    For characterizing Bauschinger effect factor (BEF) and Bauschinger modulus reduction of an A5083 aluminum alloy experimentally, several uniaxial tension- compression tests carried out in different pre-strain levels using INSTRON testing machine. BEF was investigated using both Welter and Milligan's definitions for various offset values. It was observed that Milligan's definition predicts BEF less than Welter's definition for all offset values. In addition, real loading-unloading behavior of such alloy was recorded to predict residual stresses resulting from autofrettage and shrink fit processes. Variable material properties (VMP) method, which is capable of incorporating real unloading... 

    Atomistic study of the effect of crystallographic orientation on the twinning and detwinning behavior of NiTi shape memory alloys

    , Article Computational Materials Science ; Volume 203 , 2022 ; 09270256 (ISSN) Fazeli, S ; Izadifar, M ; Dolado, J. S ; Ramazani, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Understanding the effect of crystallographic orientation on the twinnin/detwinning mechanisms in NiTi shape memory alloys at an atomistic scale can help to control and tune the mechanical properties and failure behavior of such materials. In this work, we employed classical molecular dynamics (MD) and density functional theory (DFT) computational methods to better understand how twinning and detwinning occurs through a combination of slip, twin, and shuffle on 〈0 1 0〉, 〈1 1 0〉, and 〈1 1 1〉 crystallographic orientations under uniaxial tensile test. Elastic constants including Young's Modulus (E), Bulk modulus (B), Poisson's ratio (ν), and Shear Modulus (G) are obtained and computed for... 

    Atomistic simulations of mechanical properties and fracture of graphene: A review

    , Article Computational Materials Science ; Volume 210 , 2022 ; 09270256 (ISSN) Torkaman Asadi, M. A ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Material properties and fracture characteristics are among the most prominent parameters that should be considered for a wide range of graphene applications. This article reviews recent advances in theoretical studies on the mechanical properties and fracture behaviors of graphene, focusing on the effect of various simulation models. Most studies investigated single-layer graphene sheets (SLGSs) under uniaxial tensile tests using different common interatomic potentials, particularly AIREBO. Although researchers have examined a similar problem, specifically for pristine graphene, the differences in the reported values are considerable. These discrepancies are most evident in fracture... 

    A single cone-cap plasticity with an isotropic hardening rule for powder materials

    , Article International Journal of Mechanical Sciences ; Volume 47, Issue 1 , 2005 , Pages 94-109 ; 00207403 (ISSN) Khoei, A. R ; Azami, A. R ; Sharif University of Technology
    2005
    Abstract
    In this paper, a new single cone-cap plasticity with an isotropic hardening rule is presented for powder materials. A general form is developed for the cap plasticity, which can be compared with some common double-surface plasticity models proposed for powders in literature. The constitutive elasto-plastic matrix and its components are derived based on the definition of yield surface, hardening parameter and nonlinear elastic behavior, as a function of relative density of powder. Different aspects of the model are illustrated and the procedure for determination of powder parameters is described. Finally, the applicability of the proposed model is demonstrated in numerical simulation of... 

    A proposal for distributed humidity sensor based on the induced LPFG in a periodic polymer coated fiber structure

    , Article Optics and Laser Technology ; Volume 117 , 2019 , Pages 126-133 ; 00303992 (ISSN) Dehghani Sanij, M ; Esmailzadeh Noghani, F ; Bahrampour, A ; Bahrampour, A. R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this paper, a distributed relative humidity (RH) or moisture sensor is proposed. The proposed structure is a single mode telecommunication optical fiber coated by humidity sensitive and insensitive polymers periodically. The polymer coated fiber is surrounded by a high Young's modulus material such as stainless steel mesh. The swelling of the coated Humidity Sensitive Polymers (HSPs) as a result of moisture absorption induces fiber gratings in the single mode fiber. Depending on the coating period relative to the light wavelength, the induced fiber grating can be Fiber Bragg Grating (FBG) or Long Period Fiber Grating (LPFG). The light reflected by the induced FBG or losses due to the... 

    Antioxidant, antifungal, water binding, and mechanical properties of poly(vinyl alcohol) film incorporated with essential oil as a potential wound dressing material

    , Article Journal of Applied Polymer Science ; Vol. 131, issue. 20 , 2014 Kavoosi, G ; Nateghpoor, B ; Dadfar, S. M. M ; Dadfar, S. M. A ; Sharif University of Technology
    Abstract
    In this study, the properties of poly (vinyl alcohol)(PVA) films incorporated with Zataria multiflora essential oil (ZMO) as a potential antioxidant/antibacterial material was investigated. PVA films were prepared from PVA solutions (2% w/v) containing different concentrations of ZMO. Water solubility, moisture absorption, water swelling, and water vapor permeability for pure PVA films were 57 ± 1.1, 99 ± 3.2%, 337 ± 8%, and 0.453 ± 0.015 g mm/m2 h, respectively. Incorporation of ZMO into PVA films caused a significant decrease in water swelling and moisture absorption and increase in solubility and water vapor permeability. Tensile strength, elastic modulus, and elongation at break for pure... 

    A novel procedure for micromechanical characterization of white matter constituents at various strain rates

    , Article Scientia Iranica ; Volume 27, Issue 2 , 2021 , Pages 784-794 ; 10263098 (ISSN) Hoursan, H ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Optimal hyperplastic coeficients of the micromechanical constituents of the human brain stem were investigated. An evolutionary optimization algorithm was combined with a Finite Element (FE) model of a Representative Volume Element (RVE) to nd the optimal material properties of axon and Extra Cellular Matrix (ECM). The tension and compression test results of a previously published experiment were used for optimizing the material coeficients, and the shear experiment was used for the validation of the resulting constitutive model. The optimization algorithm was used to search for optimal shear moduli and ber sti ness of axon and ECM by tting the average stress in the axonal direction with the... 

    A novel nonlinear constitutive relation for graphene and its consequence for developing closed-form expressions for Young's modulus and critical buckling strain of single-walled carbon nanotubes

    , Article Acta Mechanica ; Volume 222, Issue 1-2 , 2011 , Pages 91-101 ; 00015970 (ISSN) Shodja, H. M ; Delfani, M. R ; Sharif University of Technology
    2011
    Abstract
    Carbon nanotubes (CNTs) are viewed as rolled graphene. Thus, an appropriate formulation describing the behavior of CNTs must contain the key information about both their initial configuration as graphene and final configuration as CNT.On this note, to date, somemodels, in particular based on the Cauchy- Born rule, for the description of CNTs behavior exist. A simplifying assumption in some of these models is that the length and perimeter of the CNT equal the corresponding dimensions of the unrolled initial configuration, thus neglecting the induced hoop and longitudinal strains. On the other hand, the present work offers a purely nonlinear continuum model suitable for the description of the... 

    A novel method for production of foamy core@compact shell Ti6Al4V bone-like composite

    , Article Journal of Alloys and Compounds ; Volume 656 , 2016 , Pages 416-422 ; 09258388 (ISSN) Ahmadi, S ; Sadrnezhad, S. K ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    This paper presents a novel method for fabrication of bone-like Ti6Al4V foamy core@compact shell composite for utilization as substitutive implant for cortical bone having porous core. Seven prototypes with core-diameters of 0, 6, 8, 10, 12, 14 and 16 mm surrounded by dense shells of respective thicknesses 8, 5, 4, 3, 2, 1 and 0 were produced by an innovative two-stage packing/compaction sintering method. Density, porosity, Young's modulus and compression strength of the prototypes depended on the core diameter. Mechanical strength and Young's modulus of 10@16 (10 mm core, 16 mm diameter prototypes) resembled that of the human ulna bone. Creation of foam at the center was achieved by... 

    An exact analysis for the hoop elasticity and pressure-induced twist of CNT-nanovessels and CNT-nanopipes

    , Article Mechanics of Materials ; Volume 82 , 2015 , Pages 47-62A ; 01676636 (ISSN) Delfani, M. R ; Shodja, H. M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Carbon nanotubes (CNTs) with and without end caps may be used for fluid storage and transport, respectively, referred to as CNT-nanovessel and CNT-nanopipe. The determination of the stiffness in the hoop (circumferential) and radial directions, ideal hoop strength, and hoop stress-strain curve of such nanostructures is of particular interest. Due to the proposed viewpoint, a chiral free-standing single-walled CNT (SWCNT) has a natural angle of twist and natural extension along the axis of the tube. For example, for the SWCNT (9,3) with diameter of 0.85 nm and chirality angle of 13.9°, the natural angle of twist per unit length is 1.45×10-3 rad/nm. Previously, only Vercosa et al. (2010) who... 

    A new model for the effect of grain size on the elastic modulus of nanocrystalline materials

    , Article Materials Science- Poland ; Volume 27, Issue 1 , 2009 , Pages 279-285 ; 01371339 (ISSN) Ali Shafiei, M ; Sharif University of Technology
    2009
    Abstract
    A new model is developed for the structure of nanocrystalline materials. Based on the developed model, a new approach for investigating the effect of grain size on the elastic moduli of nanocrystalline materials is introduced. The predictions of the model are strongly correlated with the experimental results reported in the existing literature