Loading...
Search for: electric-conductivity
0.013 seconds
Total 223 records

    Electrical conductivity of methylimidazolium hexafluorophosphate ionic liquid in the presence of colloidal silver nano particles with different sizes and temperatures

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 39 , 2017 ; 19327447 (ISSN) Taherkhani, F ; Kiani, S ; Sharif University of Technology
    American Chemical Society  2017
    Abstract
    Colloidal nanoparticle could be used for recognition location of tumors and cancer tissue. A simulation of molecular dynamic for colloidal silver nanoparticles (Ag NPs) based on density functional theory (DFT) potential parametrization with different sizes in 1-ethyl-3-methylimidazolium hexafluorophosphate [EMim][PF6] ionic liquid was performed. Then, using Green Kubo formalism, diffusion coefficient for Ag NPs in IL and in the gas phase was calculated. We also calculated diffusion coefficients of anions and cations for pure IL and IL in the presence of different sizes of Ag NPs at different temperatures. The findings showed that the diffusion coefficient of anions and cations increases in... 

    Influence of deformation during T10 treatment on microstructure/hardness/ electrical conductivity of Cu-Cr alloy produced in nonprotected atmosphere

    , Article Materials Science and Technology ; Volume 25, Issue 10 , 2009 , Pages 1283-1288 ; 02670836 (ISSN) Hosseini, E ; Habibollahzadeh, A ; Erfanmanesh, M ; Mostajabodave, H ; Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    Cu-1·5Cr alloy was successfully produced by a new method, composed of alloying via melting in a non-protected atmosphere followed by rapid cooling in a water cooled mould. The effects of deformation magnitude during T10 treatment on microstructure, electrical conductivity and hardness of alloy were also investigated. The results showed that cold work before age hardening treatment, especially in the range of 20-40% deformation, provides optimum electrical and mechanical properties, i.e. electrical conductivity of 70-85% International Annealed Copper Standard (IACS) and hardness of 160-180 HB. In addition, the cold work promotes a useful anisotropy in electrical and mechanical properties of... 

    An inverse solution for 2D electrical impedance tomography based on electrical properties of material blocks

    , Article Journal of Applied Sciences ; Volume 9, Issue 10 , 2009 , Pages 1962-1967 ; 18125654 (ISSN) Abbasi, A ; Vosoughi Vahdat, B ; Ebrahimi Fakhim, G ; Sharif University of Technology
    2009
    Abstract
    The present study provides an inverse solution and analysis on a new approach for Electrical Impedance Tomography (EIT) process as block method in EIT. In this method, it is assumed that all of the panicles of each block have the same electrical properties (electrical conductivities). This technique is used to enhance image resolution and also to improve reconstruction algorithm. Although this method has been developed for 3D objects, in this study it is assumed that the subject has a (two-dimensional) rectangular shape and is made of fixed size blocks. By considering the previous conditions and computing relationship among currents, voltages and electrical impedances of blocks, the required... 

    The formation of atomic nanoclusters on graphene sheets

    , Article Nanotechnology ; Volume 20, Issue 13 , 2009 ; 09574484 (ISSN) Neek Amal, M ; Asgari, R ; Rahimi Tabar, M. R ; Sharif University of Technology
    2009
    Abstract
    The formation of atomic nanoclusters on suspended graphene sheets has been investigated by employing a molecular dynamics simulation at finite temperature. Our systematic study is based on temperature-dependent molecular dynamics simulations of some transition and alkali atoms on suspended graphene sheets. We find that the transition atoms aggregate and make various size nanoclusters distributed randomly on graphene surfaces. We also report that most alkali atoms make one atomic layer on graphene sheets. Interestingly, the potassium atoms almost deposit regularly on the surface at low temperature. We expect from this behavior that the electrical conductivity of a suspended graphene doped by... 

    Design, operation, performance evaluation and mathematical optimization of a vermifiltration pilot plan for domestic wastewater treatment

    , Article Journal of Environmental Chemical Engineering ; Volume 8, Issue 1 , 2020 Ghasemi, S ; Mirzaie, M ; Hasan Zadeh, A ; Ashrafnejad, M ; Hashemian, S. J ; Shahnemati, S. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The present study shows the approach developed and employed to wastewater treatment utilizing the vermifiltration technique in a region with a population of approx. 280 people. The domestic sewage from the residential area accumulated in the septic tank was fed into the system designed based on the combination of the sand filter and the vermifilter with the optimum loading rate of 2m2 per day for 45 days. The pH, electrical conductivity, chemical oxygen demand, turbidity and nitrate concentration of wastewater were measured before and after vermitreatment for the mentioned period. The results demonstrated that the unique combination of the vermifiltration system with the sand filter was able... 

    Enhancing Seebeck coefficient and electrical conductivity of polyaniline/carbon nanotube–coated thermoelectric fabric

    , Article Journal of Industrial Textiles ; Volume 51, Issue 2_suppl , 2022 , Pages 3297S-3308S ; 15280837 (ISSN) Amirabad, R ; Ramazani Saadatabadi, A ; Pourjahanbakhsh, M ; Siadati, M. H ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    In this work, flexible thermoelectric fabrics, polyester/yarn fabrics coated with polyaniline/carbon nanotube (PANI/CNT) nanocomposite, were fabricated by sequential processing: (I) polyaniline/carbon nanotube nanocomposites preparation by a one-step in-situ polymerization and (II) dip coating of a mixture solution of CNT-doped PANI on a polyester/yarn fabric. Nanocomposites were synthesized with various CNT content (0.5, 2.5, 5, and 10 wt%) and characterized using different methods. The Seebeck coefficient and electrical conductivity measurements were used to determine their thermoelectric properties. The results revealed significant improvement in both electrical conductivity and the... 

    Investigation of Water Electrical Parameters as a Function of Measurement Frequency and Concentration Using Cylindrical Capacitive Sensors

    , M.Sc. Thesis Sharif University of Technology Hosseinzadeh Fakhr, Mahan (Author) ; Golnabi, Hossein (Supervisor) ; Gobal, Fereydoon (Co-Advisor)
    Abstract
    The electrical conductivity of the solution has been one of the important physical quantities in many application. In this respect many probes and devices such as conductive sensors have been devised. In this study electrical properties of different water samples at frequency step range of 100-100000 Hz are measured by using the long cylindrical capacitive sensor and a measuring module (LCR-703). Operation of the capacitance measurement module for such probes is based on the auto balancing bridge method. Comparison of the measured capacitances and measured resistances for different water samples shows a decrease by increasing the measurement frequency. In another study the dielectric... 

    Electrically Conductive Fibers and Films Based on PLA and Nano PANI

    , M.Sc. Thesis Sharif University of Technology Ashraf, Sajad (Author) ; Frounchi, Masoud (Supervisor) ; Dadbin, Susan (Supervisor)
    Abstract
    Nowadays, the use of processed conductive polymers for conducting matrix polymers, as well as improving other properties for planting in the body, is very common. In this project, the fabrication and identification of electrically conductive films and fibers from biocompatible poly lactic acid and conductive polyAniline polymer in the form of nano-fibers or nanoparticles was intended. These fibers and films have been made in form of a plate or tube then, have been used as biosensors. These polymeric prostheses should be sterilized before planting in human body. Gamma rays are the best sterilization methods and are used at low doses (25 kGy) to sterilize plastic medical supplies. On the other... 

    Utilization of least square support vector machine (LSSVM) for electrical resistivity prediction of the zn-mn-s nanocrystalline semiconductor films

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 3, Issue PARTS A, B, AND C , 2012 , Pages 1099-1104 ; 9780791845196 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this investigation, application of the least square support vector machine (LSSVM) for modeling of the electrical resistivity of the magnetic Zn-Mn-S nanocrystalline semiconductor films has been described. The model has been trained based on the experimental data obtained from a published work by Sreekantha Reddy et al. The model inputs are temperature and variations in the concentrations of Zn, Mn. The results indicate that LSSVM is able to be used for accurate prediction of the electrical resistivity of the Zn-Mn-S nanocrystalline semiconductor films  

    Reflection and transmission of obliquely incident graphene plasmons by discontinuities in surface conductivity: Observation of the Brewster-like effect

    , Article Journal of Optics (United Kingdom) ; Volume 18, Issue 7 , 2016 ; 20408978 (ISSN) Farajollahi, S ; Rejaei, B ; Khavasi, A ; Sharif University of Technology
    Institute of Physics Publishing 
    Abstract
    Scattering of graphene surface plasmons that are obliquely incident on a line discontinuity in graphene surface conductivity is investigated. The analysis is based on a solution of the quasi-static integral equation for surface charge density. It is shown that the reflection coefficient of the graphene plasmons reaches a minimum at a specific angle of incidence that depends on the ratio of conductivities of the two regions surrounding the discontinuity. This effect, which is similar to the well-known Brewster effect, is pronounced for abrupt discontinuities, but becomes weaker as the width of the transition region increases. The results obtained can be used for the design and analysis of... 

    The effect of grain size on the fluctuation-induced conductivity of Cu 1-xTlxBa2Ca3Cu4O 12-δ superconductor thin films

    , Article Superconductor Science and Technology ; Volume 20, Issue 8 , 2007 , Pages 742-747 ; 09532048 (ISSN) Khurram, A. A ; Mumtaz, M ; Khan, N.A ; Ahadian, M. M ; Iraji Zad, A ; Sharif University of Technology
    2007
    Abstract
    The high temperature superconductor thin films Cu1-xTl xBa2Ca3Cu4O12-δ (Cu1-xTlx- 1234) are post-annealed in a nitrogen atmosphere. The zero-resistivity critical temperature (Tc(R ≤ 0)) of these thin films is increased from 92.3 to 104K. The grain size is enhanced and their morphology is improved with the post-annealing. The enlargement of grain size is linked to fluctuation-induced conductivity (FIC) in the light of Aslamazov-Larkin (AL) theory. The FIC measurements have shown that the cross-over of three-dimensional (3D) to two-dimensional (2D) behaviour of fluctuations is shifted to higher temperature values with an increase of post-annealing temperature. These results have shown that the... 

    Electrical and magnetic properties of RuGd1.6Ce 0.4Sr2Cu2O10-δ

    , Article 4th International Conference on Magnetic and Superconducting Materials, MSM'05, Agadir, 5 September 2006 through 8 September 2006 ; Volume 3, Issue 9 , 2006 , Pages 2964-2967 ; 18626351 (ISSN) Sabri, D ; Hadipour, H ; Mirzadeh, M ; Akhavan, M ; Sharif University of Technology
    2006
    Abstract
    We have studied the electrical and magnetic properties of normal and superconducting states of RuGd1.6Ce0.4Sr 2Cu2O10-δ (Ru-1222) system, prepared by the standard solid-state reaction technique, with applied magnetic field. The resistivity curves show that at high temperature the system is paramagnetic. At lower temperature, we can observe two magnetic transitions from paramagnetic state to anti-ferromagnetic and from anti-ferromagnetic to ferromagnetic. At room temperature the resistivity of sample shows insulating behavior and superconducting transition occurs at 45 K. Superconducting and magnetic parameters such as superconducting transition temperature Tc, magnetic transition Tirr, have... 

    Novel optical devices based on surface wave excitation at conducting interfaces

    , Article Semiconductor Science and Technology ; Volume 18, Issue 6 , 2003 , Pages 582-588 ; 02681242 (ISSN) Mehrany, K ; Khorasani, S ; Rashidian, B ; Sharif University of Technology
    2003
    Abstract
    In this paper, the excitation of surface waves in the presence of interface charges is discussed. Interface charges affect the dispersion of surface waves, and therefore they can be used in various applications such as optical modulators, switches, sensors and filters. These waves can be superior to surface plasmon waves since they are not lossy. The lossless property is satisfied in a limited range of millimetre waves to far infrared  

    Analysis of impedance stabilization of natural and metallic DNA molecules

    , Article 2012 19th Iranian Conference of Biomedical Engineering, ICBME 2012 ; 2012 , Pages 139-142 ; 9781467331302 (ISBN) Mohajeri, R ; Khakestar, A. S ; Hejazi, M. S ; Fardmanesh, M ; Sharif University of Technology
    2012
    Abstract
    In this work, we used λ-DNA to produce metallic DNA samples and we investigated the stabilization time of their impedances. This is in order to show that the DNA molecules can possibly be utilized as a frame for assembling the nanocircuits and as an electronic element as well, in nanoelectric devices. It has been shown that metallic DNA has lower stabilization time than natural DNA. As expected, it is shown that making the bundled DNA oriented, impacts their impedance stabilization. In order to find the characteristic impedance of the DNA molecules under direct current, we designed and made patterned electrodes to make electrical connections between the DNAs and the used current source. The... 

    Enhanced tensile properties and electrical conductivity of Cu-CNT nanocomposites processed via the combination of flake powder metallurgy and high pressure torsion methods

    , Article Materials Science and Engineering A ; Volume 773 , 2020 Akbarpour, M. R ; Mousa Mirabad, H ; Alipour, S ; Kim, H. S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Using flake powder metallurgy (FPM) technique, combined with high pressure torsion, super high strength-ductile Cu-CNT nanocomposite with high electrical conductivity is developed. The nanocomposite with 4 vol% CNT showed high tensile strength of ~474 MPa, high electrical conductivity of ~82.5% IACS as well as appreciable ductility of ~11%. According to microstructural studies, the excellent properties of the nanocomposite are attributed to the formation of trimodal grains, high density of twin and low angle grain boundaries, improvement in CNT and Cu interfacial bonding, and appropriate distribution and maintaining the microstructure of the nanotubes in the production process. The results... 

    Oxidation behavior and electrical properties of de-siliconized aisi 430 alloy with mn1.5co1.5o4 coating for solid oxide fuel cell interconnect

    , Article Oxidation of Metals ; Volume 93, Issue 3-4 , 2020 , Pages 401-415 Bakhshi Zadeh, A ; Salmani, S ; Faghihi Sani, M. A ; Abdoli, H ; Jalili, N ; Sharif University of Technology
    Springer  2020
    Abstract
    Abstract: The effect of de-siliconization on the oxidation behavior of AISI 430 stainless steel used for solid oxide fuel cell interconnect application was investigated. De-siliconization treatment was conducted via heating steel parts in an H2 environment. The de-siliconized substrates were then coated with a Mn1.5Co1.5O4 spinel coating, using wet spray method. For comparison, a similar coating process was applied on the as-received AISI 430 stainless steel specimens. Oxidation kinetics of coated interconnects were evaluated at 700, 800 and 900 °C in air. Results showed that the de-siliconization surface treatment decreased oxidation rates, with kinetic rates (g2 cm−4 s−1) of 4.39 × 10−14... 

    Synthesis and properties of Ce-doped TiO2-reduced graphene oxide nanocomposite

    , Article Journal of Alloys and Compounds ; Volume 742 , 2018 , Pages 986-995 ; 09258388 (ISSN) Ahmadi, N ; Nemati, A ; Bagherzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    A nanocomposite of Ce-doped TiO2-reduced graphene oxide (CedT/RGO) was synthesized to evaluate the synergistic effects of constituents on electrical and photoelectric properties. The nanoparticles of titania and CedT were synthesized via the sol-gel method. Then, RGO was prepared using a new version derived from the Hammer's method and hydrothermal methods. Finally, CedT/RGO nanocomposite was synthesized applying hydrothermal method. The nanoparticles and nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy and elemental mapping. Then, diffuse reflectance and... 

    Multifunctional conductive biomaterials as promising platforms for cardiac tissue engineering

    , Article ACS Biomaterials Science and Engineering ; Volume 7, Issue 1 , 2021 , Pages 55-82 ; 23739878 (ISSN) Mousavi, A ; Vahdat, S ; Baheiraei, N ; Razavi, M ; Norahan, M. H ; Baharvand, H ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Adult cardiomyocytes are terminally differentiated cells that result in minimal intrinsic potential for the heart to self-regenerate. The introduction of novel approaches in cardiac tissue engineering aims to repair damages from cardiovascular diseases. Recently, conductive biomaterials such as carbon- and gold-based nanomaterials, conductive polymers, and ceramics that have outstanding electrical conductivity, acceptable mechanical properties, and promoted cell-cell signaling transduction have attracted attention for use in cardiac tissue engineering. Nevertheless, comprehensive classification of conductive biomaterials from the perspective of cardiac cell function is a subject for... 

    Effect of iron Powder in Electrical Conductivity of Concrete

    , M.Sc. Thesis Sharif University of Technology Ghanbari Chemazketi, Ali (Author) ; Joghataie, Abdolreza (Supervisor)
    Abstract
    Performance and mechanical properties of concrete such as tensile strength, compressive strength, conductivity, etc change with creation and emission of cracks. As health monitoring of important structures is a vital subject that demands a large amount of budget annualy. Studying problems and disadvantages of concrete is one of the most important branches of research.
    There are many ways to detect damage in concrete. Electrical resistance method that has been used in this thesis. In this study, an instrument called Risistivity Meter is used to measuring the electrical conductivity. This instrument measured the electrical conductivity, that it can be appropriate way to detect cracks... 

    Fluid Suspended Films in Present of Electric Field and Voltage

    , Ph.D. Dissertation Sharif University of Technology Shirsavar, Reza (Author) ; Amjadi, Ahmad (Supervisor) ; Ejtehadi, Mohammad Reza ($item.subfieldsMap.e)
    Abstract
    Scientists want to know how they can control fluids motion. They use electric fields for controlling the fluids in different dimensions. In small size, application of electric fields is very important because of biological applications. We use electric current and field for rotating freely suspended films. Here, we study soap, polar and non-polar liquids, MBBA liquid crystal and ferrofluids films. We show that the surface charge plays the crucial role in rotating the films.We study the correlation between rotation of a film and different physical quantities.Our experiments confirm that dipole moments of fluid molecules do not show a clear effect on the rotation. Increasing the dipole moment...