Loading...
Search for: electric-conductivity
0.012 seconds
Total 223 records

    Two-dimensional quantum simulation of scaling effects in ultrathin body MOSFET structure: NEGF approach

    , Article 14th International Workshop on the Physics of Semiconductor Devices, IWPSD, Mumbai, 16 December 2007 through 20 December 2007 ; 2007 , Pages 240-242 ; 9781424417285 (ISBN) Orouji, A.A ; Dehdashti, N ; Faez, R ; Sharif University of Technology
    2007
    Abstract
    For the first time, we present self-consistent solution of ultrathin body device structures to investigate the device parameters variation on the characteristics of nanoscale MOSFET. Our two dimensional (2-D) device simulator Is based on Nonequlibrium Green's Function (NEGF) forma lism. Starting from a basic structure (DG-MOSFET) with a gate length of 10 nm, variation of gate length, channel thickness, gate oxide parameters was carried out in connection with the numerical calculation of device characteristics. In this work Quantum transport equations are solved in 2-D by NEGF method in active area of the device to obtain the charge density and Poisson's equation is solved in entire domain of... 

    Two-dimensional mechanism of electrical conductivity in Gd1-xCexBa2Cu3O7-δ

    , Article Journal of Physics Condensed Matter ; Volume 20, Issue 34 , 2008 ; 09538984 (ISSN) Mofakham, S ; Mazaheri, M ; Akhavan, M ; Sharif University of Technology
    2008
    Abstract
    Partial substitutions of Pr and Ce are known to suppress the superconducting state in REBa2Cu3O7-δ systems. We have substituted Ce for Gd in Gd1-xCexBa 2Cu3O7-δ compounds with x = 0.0-0.6 by the standard solid-state reaction technique. X-ray diffraction (XRD) experiments are performed and their results are refined by the Rietveld method. XRD analysis shows a predominantly single-phase perovskite structure with few impurity phases. Our resistivity results show that, by increasing the Ce content, Tc decreases, the transition temperature width increases, and in the normal state a metal-insulator transition (MIT) occurs at x c = 0.12. The normal state resistivity of the samples and their slopes... 

    Tunable bandgap opening in the proposed structure of silicon-doped graphene

    , Article Micro and Nano Letters ; Volume 6, Issue 8 , 2011 , Pages 582-585 ; 17500443 (ISSN) Azadeh, M. S. S ; Kokabi, A ; Hosseini, M ; Fardmanesh, M ; Sharif University of Technology
    2011
    Abstract
    A specific structure of doped graphene with substituted silicon impurity is introduced and ab initio density-functional approach is applied for the energy band structure calculation of the proposed structure. Using the band structure calculation for different silicon sites in the host graphene, the effect of silicon concentration and unit cell geometry on the bandgap of the proposed structure is also investigated. Chemically, silicon-doped graphene results in an energy gap as large as 2eV according to density-functional theory calculations. As the authors will show, in contrast to previous bandgap engineering methods, such structure has significant advantages including wide gap tuning... 

    Tribo-charging of binary mixtures composed of coarse and fine particles in gas–solid pipe flow

    , Article Particuology ; Volume 43 , 2019 , Pages 101-109 ; 16742001 (ISSN) Wang, H ; Fotovat, F ; Bi, X. T ; Grace, J. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Experiments were conducted to investigate the effect of adding fines on the tribo-charging of coarse glass beads. Four types of fines, i.e., copper, stainless steel, uncoated and silver-coated fine glass beads, mixed with 240–830 μm glass beads were conveyed by air through a stainless-steel spiral pipe acting as a tribo-charger. Regardless of the type or electrical conductivity of the fine particles tested, adding small amounts of fines (up to 10 wt%) to coarse glass beads resulted in a sharp increase in the mass and surface charge densities of the particles. In general, the profiles of the mass and surface charge densities of the fine–coarse particle mixtures as a function of the mixture... 

    Transport in droplet-hydrogel composites: response to external stimuli

    , Article Colloid and Polymer Science ; Volume 293, Issue 3 , March , 2015 , Pages 941-962 ; 0303402X (ISSN) Mohammadi, A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Determination of effective transport properties of droplet-hydrogel composites is essential for various applications. The transport of ions through a droplet-hydrogel composite subjected to an electric field is theoretically studied as an initial step toward quantifying the effective transport properties of droplet-hydrogel composites. A three-phase electrokinetic model is used to derive the microscale characteristics of the polyelectrolyte hydrogel, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which encloses the interior fluid. The surface has the thickness of zero and the electrostatic potential ζ. Standard... 

    TPU/graphene nanocomposites: effect of graphene functionality on the morphology of separated hard domains in thermoplastic polyurethane

    , Article Polymer ; Volume 148 , 18 July , 2018 , Pages 169-180 ; 00323861 (ISSN) Razeghi, M ; Pircheraghi, G ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Graphene nanoplatelets with different surface functional groups and polarity were prepared by Hummer's method and electrochemical exfoliation of graphite in two aqueous acids. The XRD, FTIR and sedimentation tests performed to characterize the polarity of the prepared graphenes. The highest polarity was associated with the sample prepared by Hummer's method and the sample synthesized by electrochemical exfoliation in nitric acid medium showed the moderate polarity. Meanwhile, the sample prepared in sulfuric acid medium showed the lowest polarity. Then thermoplastic polyurethane (TPU)/graphene nanocomposite films were fabricated with solvent exchange method. While the dispersion state and... 

    Toward single-DNA electrochemical biosensing by graphene nanowalls

    , Article ACS Nano ; Volume 6, Issue 4 , March , 2012 , Pages 2904-2916 ; 19360851 (ISSN) Akhavan, O ; Ghaderi, E ; Rahighi, R ; Sharif University of Technology
    2012
    Abstract
    Graphene oxide nanowalls with extremely sharp edges and preferred vertical orientation were deposited on a graphite electrode by using electrophoretic deposition in an Mg 2+-GO electrolyte. Using differential pulse voltammetry (DPV), reduced graphene nanowalls (RGNWs) were applied for the first time, in developing an ultra-high-resolution electrochemical biosensor for detection of the four bases of DNA (G, A, T, and C) by monitoring the oxidation signals of the individual nucleotide bases. The extremely enhanced electrochemical reactivity of the four free bases of DNA, single-stranded DNA, and double-stranded DNA (dsDNA) at the surface of the RGNW electrode was compared to electrochemical... 

    The use of graphene in the self-organized differentiation of human neural stem cells into neurons under pulsed laser stimulation

    , Article Journal of Materials Chemistry B ; Vol. 2, Issue. 34 , 2014 , Pages 5602-5611 ; ISSN: 20507518 Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    Abstract
    An effective and self-organized differentiation of human neural stem cells (hNSCs) into neurons was developed by the pulsed laser stimulation of the cells on graphene films (prepared by drop-casting a GO suspension onto quartz substrates). The effects of graphene oxide (GO) and hydrazine-reduced graphene oxide (rGO) sheets on the proliferation of hNSCs were examined. The higher proliferation of the cells on the GO was assigned to its better hydrophilicity. On the other hand, the rGO sheets, which have significantly better electrical conductivity than GO, exhibited more differentiation of the cells into neurons. The pulsed laser stimulation not only resulted in an accelerated differentiation... 

    The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3 nanocomposites

    , Article Materials and Design ; Volume 130 , 2017 , Pages 26-36 ; 02641275 (ISSN) Khodabakhshi, F ; Simchi, A ; Sharif University of Technology
    Abstract
    There are many engineering applications in which composite materials are required to satisfy two or more criteria regarding physical and mechanical properties. In this article, Al-matrix nanocomposites reinforced with different volume fractions of SiC nanoparticles (~ 50 nm; up to 6%) were processed by powder metallurgy (P/M) routes through mechanical milling and hot consolidation techniques. Microstructural studies showed that nano-metric Al2O3 particles with a size of ~ 20 nm and volume fraction of ~ 2% were formed and distributed in the metal matrix, owing to the surface oxides breaking. Microstructural analysis also revealed that the size of cellular structure and the density of... 

    Thermal conductivity, viscosity, and electrical conductivity of iron oxide with a cloud fractal structure

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 53, Issue 4 , 2017 , Pages 1343-1354 ; 09477411 (ISSN) Jamilpanah, P ; Pahlavanzadeh, H ; Kheradmand, A ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    In the present study, nanoscale iron oxide was synthesized using a hydrothermal method; XRD analysis revealed that all the produced crystals are iron oxide. FESEM microscopic imaging showed that particles are on the scale of nano and their morphology is cloud fractal. To study the laboratory properties of thermal conductivity, viscosity, and electrical conductivity of the nanoparticles, they were dispersed in ethylene glycol-based fluid and the nanofluid was in a two-step synthesis during this process. The experiments were carried out with a weight fraction between 0 and 2 % at temperatures between 25 and 45 °C. According to the results of the experiments, increasing the density of... 

    Thermal and electrical conductivity of a graphene-based hybrid filler epoxy composite

    , Article Journal of Materials Science ; Volume 56, Issue 27 , 2021 , Pages 15151-15161 ; 00222461 (ISSN) Nouri Borujerdi, A ; Kazemi Ranjbar, S ; Sharif University of Technology
    Springer  2021
    Abstract
    The development of polymer-based composites with thermal transport capability has now become essential in response to the efficient thermal management required in electronic and energy conversion devices. In this work, a novel hybrid filler consisting of graphene nanoplatelet (GNP) and boron nitride microparticles (micro-BN) is used to improve the thermal conductivity of epoxy composite. The GNPs with an average lateral size of 8 µm and an average thickness of 5 nm are in the same volume range with the 1 µm size micro-BN particles. According to the results, the thermal conductivity of the composites changes abruptly with increasing micro-BN loading at fixed GNP loading, which is attributed... 

    The physical and mechanical properties of Cu/Al2O3 composite synthesized by internal oxidation

    , Article Materials Science and Technology Conference and Exhibition 2009, MS and T'09, 25 October 2009 through 29 October 2009, Pittsburgh, PA ; Volume 3 , 2009 , Pages 1806-1815 ; 9781615676361 (ISBN) Soleimanpour, A. M ; Abachi, P ; Alimardani, N ; Motamen, A ; Sharif University of Technology
    Abstract
    The internal Oxidation introduces a practical method for producing copper matrix composites reinforced by alumina particles. The mechanical and physical properties of alumina reinforced copper composites and alloy specimens were investigated. This experiment involves casting of Cu-Al alloys with 0.37, 1, 2 and 3 weight percent of aluminium in non-oxidizing atmosphere with pure oxygen free copper. The composite specimens produced after internal oxidation process at 950°C for 10 hours in sealed alumina crucible. The microstructures of composite specimens were studied after internal oxidation using SEM and AFM. The hardness and electrical resistivity tests were measured. The wear properties of... 

    The formation of atomic nanoclusters on graphene sheets

    , Article Nanotechnology ; Volume 20, Issue 13 , 2009 ; 09574484 (ISSN) Neek Amal, M ; Asgari, R ; Rahimi Tabar, M. R ; Sharif University of Technology
    2009
    Abstract
    The formation of atomic nanoclusters on suspended graphene sheets has been investigated by employing a molecular dynamics simulation at finite temperature. Our systematic study is based on temperature-dependent molecular dynamics simulations of some transition and alkali atoms on suspended graphene sheets. We find that the transition atoms aggregate and make various size nanoclusters distributed randomly on graphene surfaces. We also report that most alkali atoms make one atomic layer on graphene sheets. Interestingly, the potassium atoms almost deposit regularly on the surface at low temperature. We expect from this behavior that the electrical conductivity of a suspended graphene doped by... 

    The effects of a hydrochloric acid pre-treatment on the physicochemical properties and pozzolanic performance of rice husk ash

    , Article Cement and Concrete Composites ; Volume 39 , 2013 , Pages 131-140 ; 09589465 (ISSN) Gholizadeh Vayghan, A ; Khaloo, A. R ; Rajabipour, F ; Sharif University of Technology
    2013
    Abstract
    This paper investigates the effects of acid normality (0.01-6 N HCl) and combustion retention time (0.25- 16 hours) on the pozzolanic properties of pre-combustion acid-treated rice husk ash. The pozzolanic reactivity was quantified by adding ground ash to saturated Ca(OH)2 solutions and monitoring the time-dependent electrical conductivity and pH of the solutions. Also, the strength activity of ashes from different processes was measured by testing the compressive strength of mortars. It was observed that acid treatment results in ashes with higher SiO2 content, lower alkali and unburned carbon content, better grindability, and smaller particle size, in comparison with ash from non-acid... 

    The effect of sintering temperature on the weak link behavior of Bi-2223 superconductors

    , Article 4th International Conference on Magnetic and Superconducting Materials, MSM'05, Agadir, 5 September 2006 through 8 September 2006 ; Volume 3, Issue 9 , 2006 , Pages 3011-3014 ; 18626351 (ISSN) Kameli, P ; Salamati, H ; Eslami, M ; Akhavan, M ; Sharif University of Technology
    2006
    Abstract
    We have studied the effect of sintering temperature on the weak link behavior of polycrystalline Bi2223 superconductors with different intergranular coupling using the XRD, electrical resistivity and AC susceptibility techniques. The XRD results show that by increasing sintering temperature up to 865°C the Bi2212 phase fraction decrease. It was found that the Bi2212 phase on the grain boundaries is likely to play the role of weak links and consequently reduces the intergranular critical current densities. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA  

    The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles

    , Article Journal of Alloys and Compounds ; Volume 676 , 2016 , Pages 120-126 ; 09258388 (ISSN) Bagheri, Gh. A ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this research, copper matrix composites reinforced with different amounts of titanium carbide particles were produced by mechanical milling and in-situ formation of reinforcements. Morphology and size of milled powders were inspected by scanning electron microscopy (SEM) several times during milling process. Changes in lattice parameter, crystallite size, lattice strain, dislocation density and Gibbs free energy changes (due to increasing in dislocation densities and grain boundaries) in different samples (with different TiC particles contents) were studied by X-Ray Diffraction technique with Cu-kα radiation and using Nelson-Riley method and Williamson-Hall equation. Microstructure of... 

    The effect of nano-size additives on the electrical conductivity of matrix suspension and properties of self-flowing low-cement high alumina refractory castables

    , Article Ceramics International ; Volume 36, Issue 4 , 2010 , Pages 1411-1416 ; 02728842 (ISSN) Otroj, S ; Sagaeian, A ; Daghighi, A ; Nemati, Z. A ; Sharif University of Technology
    Abstract
    Influence of two nano-size additives oSubject:A. Suspensions. Subject:C. Electrical conductivity. Subject:Castable. Subject:E. Refractories. Subject:Castables. Subject:Electrical conductivity. Subject:Electrical property. Subject:High alumina. Subject:matrix. Subject:Mechanical strength. Subject:Nano-size. Subject:Polycarboxylate ethers. Subject:Refractory castables. Subject:Working time. Subject:Alumina. Subject:Cement additives. Subject:Electric conductivity. Subject:Ethers. Subject:Suspensions (fluids) Subject:Refractory materials. n electrical properties of suspension matrix of self-flowing low-cement high alumina refractory castable is investigated. For this purpose, castament FS 10 and... 

    The effect of lithium doping in solution-processed nickel oxide films for perovskite solar cells

    , Article ChemPhysChem ; Volume 20, Issue 24 , 2019 , Pages 3322-3327 ; 14394235 (ISSN) Saki, Z ; Sveinbjornsson, K ; Boschloo, G ; Taghavinia, N ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    The effect of substitutional Li doping into NiOx hole transporting layer (HTL) for use in inverted perovskite solar cells was systematically studied. Li doped NiOx thin films with preferential crystal growth along the (111) plane were deposited using a simple solution-based process. Mott-Schottky analysis showed that hole carrier concentration (NA) is doubled by Li doping. Utilizing 4 % Li in NiOx improved the power conversion efficiency (PCE) of solar devices from 9.0 % to 12.6 %. Photoluminescence quenching investigations demonstrate better hole capturing properties of Li:NiOx compared to that of NiOx, leading to higher current densities by Li doping. The electrical conductivity of NiOx is... 

    The effect of grain size on the fluctuation-induced conductivity of Cu 1-xTlxBa2Ca3Cu4O 12-δ superconductor thin films

    , Article Superconductor Science and Technology ; Volume 20, Issue 8 , 2007 , Pages 742-747 ; 09532048 (ISSN) Khurram, A. A ; Mumtaz, M ; Khan, N.A ; Ahadian, M. M ; Iraji Zad, A ; Sharif University of Technology
    2007
    Abstract
    The high temperature superconductor thin films Cu1-xTl xBa2Ca3Cu4O12-δ (Cu1-xTlx- 1234) are post-annealed in a nitrogen atmosphere. The zero-resistivity critical temperature (Tc(R ≤ 0)) of these thin films is increased from 92.3 to 104K. The grain size is enhanced and their morphology is improved with the post-annealing. The enlargement of grain size is linked to fluctuation-induced conductivity (FIC) in the light of Aslamazov-Larkin (AL) theory. The FIC measurements have shown that the cross-over of three-dimensional (3D) to two-dimensional (2D) behaviour of fluctuations is shifted to higher temperature values with an increase of post-annealing temperature. These results have shown that the... 

    The effect of current density on microstructural homogeneity, hardness, fracture toughness and electrochemical behavior of electrodeposited Cu-0.5Co/WC nano-composite coating

    , Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 3505-3511 ; 10263098 (ISSN) Khaleghpanah, Sh ; Abachi, P ; Dolati, A ; Sharif University of Technology
    Abstract
    The Cu-0.5Co/WC nano-composite coating was synthesized on CP-copper substrate using Direct Current (DC) electrodeposition method. In this work, it was tried to increase the hardness of surface without considerable degradation of copper's particular physical properties such as electrical conductivity. The effect of current density on microstructural homogeneity, hardness, fracture toughness, and electrochemical behavior of coating was investigated. The copper plates with the purity of 99.99% were used as electrodes. The electrolyte consists of tungsten carbide particles (30 g/l), copper sulfate (200 g/l), sulfuric acid (50 g/l), cobalt sulfate (50 g/l), and Sodium Dodecyl Sulfate (SDS) (0.3...