Loading...
Search for: electric-field
0.012 seconds
Total 227 records

    Terahertz lensing effect in high-temperature superconductors

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 5 , 2019 , Pages 1241-1245 ; 07403224 (ISSN) Zivari, A. P ; Tavakol, M. R ; Khavasi, A ; Rejaei, B ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    We show that high-temperature superconductors can be used to build a terahertz superlens. These materials exhibit hyperbolic behavior at frequencies between their two plasma frequencies corresponding to electric fields parallel and perpendicular to their c-axis. Due to the large component of permittivity perpendicular to the c-axis, the resolution of the proposed lens is much below the diffraction limit (λ/1000). In this paper we demonstrate this lensing phenomenon with a simple slab of a high-temperature superconductor. © 2019 Optical Society of America  

    Terahertz lensing effect in high-temperature superconductors

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 5 , 2019 , Pages 1241-1245 ; 07403224 (ISSN) Zivari, A ; Tavakol, M. R ; Khavasi, A ; Rejaei, B ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    We show that high-temperature superconductors can be used to build a terahertz superlens. These materials exhibit hyperbolic behavior at frequencies between their two plasma frequencies corresponding to electric fields parallel and perpendicular to their c-axis. Due to the large component of permittivity perpendicular to the c-axis, the resolution of the proposed lens is much below the diffraction limit (λ/1000). In this paper we demonstrate this lensing phenomenon with a simple slab of a high-temperature superconductor. © 2019 Optical Society of America  

    Theoretical comparative assessment of single- and two-phase models for natural convection heat transfer of Fe3O4/ethylene glycol nanofluid in the presence of electric field

    , Article Journal of Thermal Analysis and Calorimetry ; 2020 Etesami, N ; Tavakoli, S ; Pishvaie, M. R ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    Natural convective heat transfer of Fe3O4/ethylene glycol nanofluids around the platinum wire as a heater in the absence and presence of the high electric field was investigated, numerically. The control volume finite element method was employed for the numerical simulation. Effects of the flow model, the volume fraction of nanoparticles, Rayleigh number, and the electric field intensity on the natural heat transfer coefficient (NHTC) of nanofluid were studied. Simulation results of single-phase and two-phase flow models showed that the two-phase model could better predict experimental data than the single-phase model due to take into account the velocity of each phase in the mixture. The... 

    Stability analysis of carbon nanotubes under electric fields and compressive loading

    , Article Journal of Physics D: Applied Physics ; Volume 41, Issue 20 , 2008 ; 00223727 (ISSN) Sadeghi, M ; Ozmaian, M ; Naghdabadi, R ; Sharif University of Technology
    2008
    Abstract
    The mechanical stability of conductive, single-walled carbon nanotubes (SWCNTs) under applied electric field and compressive loading is investigated. The distribution of electric charges on the nanotube surface is determined by employing a method based on the classical electrostatic theory. For mechanical stability analysis, a hybrid atomistic-structural element is proposed, which takes into account the nonlinear features of the stability. Nonlinear stability analysis based on an iterative solution procedure is used to determine the buckling force. The coupling between electrical and mechanical models is accomplished by adding Coulomb interactions to the mechanical model. The results show... 

    Power transformers internal insulation design improvements using electric field analysis through finite-element methods

    , Article IEEE Transactions on Magnetics ; Volume 44, Issue 2 , 2008 , Pages 273-278 ; 00189464 (ISSN) Khaligh, A ; Vakilian, M ; Sharif University of Technology
    2008
    Abstract
    Understanding the potential and electric field distribution in the insulation system of a transformer during transients is vital to its construction. Therefore, we have developed a method for electric field analysis inside a power transformer. The method consists of the following steps. 1) A lumped parameter equivalent model is constructed by dividing transformer windings into several blocks. 2) The electric circuit parameters of this model are calculated. 3) Employing the results of the transformer transient model analysis as boundary conditions, a 2-D asymmetrical electric field finite-element analysis is performed to determine electric fields through the windings. The method has been... 

    An analytical solution for thermally fully developed combined pressure - electroosmotically driven flow in microchannels

    , Article International Journal of Heat and Mass Transfer ; Volume 50, Issue 5-6 , 2007 , Pages 1087-1096 ; 00179310 (ISSN) Qazi Zade, A ; Taghizadeh Manzari, M ; Hannani, S. K ; Sharif University of Technology
    2007
    Abstract
    An analytical solution is presented to study the heat transfer characteristics of the combined pressure - electroosmotically driven flow in planar microchannels. The physical model includes the Joule heating effect to predict the convective heat transfer coefficient in two dimensional microchannels. The velocity field, which is a function of external electrical field, electroosmotic mobility, fluid viscosity and the pressure gradient, is obtained by solving the hydrodynamically fully-developed laminar Navier-Stokes equations considering the electrokinetic body force for low wall zeta potentials. Then, assuming a thermally fully-developed flow, the temperature distribution and the Nusselt... 

    Power transformers internal insulation design improvements through finite element methods

    , Article IEEE TENCON 2004 - 2004 IEEE Region 10 Conference: Analog and Digital Techniques in Electrical Engineering, Chiang Mai, 21 November 2004 through 24 November 2004 ; Volume C , 2004 , Pages C440-C443 Khaligh, A ; Vakilian, M ; IEEE Region 10 ; Sharif University of Technology
    2004
    Abstract
    The knowledge of the potential and field distribution in the insulation system of a transformer, during transient excitation is vital to its construction. This paper deals with insulation design improvements of power transformers using electric field analysis. The calculation methods for electric field analysis inside a power transformer impressed with impulse voltage is presented. Initially, a lumped parameter equivalent model is constructed by dividing transformer windings into several blocks and by computing the electric circuit parameters of this model. Next, the electric field is determined employing the results of the transformer transient model circuit analysis as boundary conditions;... 

    Elemental field distributions in corrugated structures with large-amplitude gratings

    , Article Electronics Letters ; Volume 39, Issue 23 , 2003 , Pages 1690-1691 ; 00135194 (ISSN) Manzuri Shalmani, M. T ; Baghai Wadji, A. R ; Sharif University of Technology
    2003
    Abstract
    A unified and robust method has been introduced to compute magnetostatic and electrostatic fields for nonperiodic excitations in periodically corrugated anisotropic structures. The method extends a previously published concept of modified phased-periodic Green's functions for solving flat-surface problems. Convergent results have been obtained for corrugations with aspect ratios exceeding 15. Novel elemental field distributions are presented as examples  

    Numerical Simulation of Non-Newtonian Droplet Formation under External Electric Field in a Microfluidic Device

    , M.Sc. Thesis Sharif University of Technology Amiri, Nasir (Author) ; Moosavi, Ali (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Droplet formation and breakup processes are one of the important steps in many microfluidic devices with a wide range of biological and chemical applications. The purpose of this study is numerical simulation of non-Newtonian droplet formation under the influence of electric field in a microfluidic system. The innovation aspect of this project is the use of non-Newtonian fluid in this process, which, despite many applications in real issues, has been less studied, and in most of the previous researches, Newtonian fluid assumption has been used to simplify the solving. Also, simultaneously, the effects of an external electric field on this process were also studied. Carboxymethyl cellulose... 

    A novel field ionization gas sensor based on self-organized CuO nanowire arrays

    , Article Sensors and Actuators, A: Physical ; Vol. 216 , 2014 , pp. 202-206 ; ISSN: 09244247 Mohammadpour, R ; Ahmadvand, H ; Iraji Zad, A ; Sharif University of Technology
    Abstract
    In this study, we present fabrication and characterization of a gas ionization sensor based on high aspect ratio one-dimensional CuO nanowires as the field enhancing medium. Self-organized arrays of CuO nanowires have been synthesized based on a low-cost thermal oxidation method and integrated into a gas ionization sensor (GIS). The self-organized arrays of CuO nanowires have been employed to detect the identity of several gas species such as He, Ar and CO at ambient temperature and pressure. The sharp nanoscale size of CuO tips provide very high electric fields at moderate voltages (less than 100 V) and provoke the breakdown of different gases. The reduced breakdown current of the metal... 

    Liquid soap film generates electricity: a suspended liquid film rotating in an external electric field as an electric generator

    , Article Microfluidics and Nanofluidics ; Vol. 18, issue. 1 , Apr , 2014 , pp. 141-147 ; ISSN:16134982 Amjadi, A ; Feiz, M. S ; Namin, R. M ; Sharif University of Technology
    Abstract
    We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments, suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the x−y horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the x-direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the y-direction. We previously reported that a liquid film in an external electric field rotates... 

    LBM simulation of electro-osmotic flow (EOF) in nano/micro scales porous media with an inclusive parameters study

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 7 , November , 2014 ; ISBN: 9780791849545 Zakeri, R ; Lee, E. S ; Salimi, M. R ; Sharif University of Technology
    Abstract
    In this paper, we present our results about simulation of 2D-EOF in Nano/Micro scales porous media using lattice Boltzmann method (LBM) in micro-channel for EOF. The high efficient numerical code use strongly high nonlinear Poisson Boltzmann equation to predicate behavior of EOF in complex geometry. The results are developed with precisely investigation of several effective parameters on permeability of EOF, such as geometry (channel height and number and location of charge), external electric field, thickness of Debye length (ionic concentration), and zeta potential. Our results are in excellent agreement with available analytical results. Our results show that for certain external electric... 

    Thermal conductivity of anisotropic spin-1/2 two leg ladder: Green's function approach

    , Article European Physical Journal B ; Vol. 87, issue. 8 , Oct , 2014 Rezania, H ; Langari, A ; Van Loosdrecht, P. H. M ; Zotos, X ; Sharif University of Technology
    Abstract
    We study the thermal transport of a spin-1/2 two leg antiferromagnetic ladder in the direction of legs. The possible effect of spin-orbit coupling and crystalline electric field are investigated in terms of anisotropies in the Heisenberg interactions on both leg and rung couplings. The original spin ladder is mapped to a bosonic model via a bond-operator transformation, where an infinite hard-core repulsion is imposed to constrain one boson occupation per site. The Green's function approach is applied to obtain the energy spectrum of quasi-particle excitations responsible for thermal transport. The thermal conductivity is found to be monotonically decreasing with temperature due to increased... 

    Rotational regimes of freely suspended liquid crystal films under electric current in presence of an external electric field

    , Article Microfluidics and Nanofluidics ; Volume 13, Issue 1 , 2012 , Pages 83-89 ; 16134982 (ISSN) Shirsavar, R ; Amjadi, A ; Ejtehadi, M. R ; Mozaffari, M. R ; Feiz, M. S ; Sharif University of Technology
    2012
    Abstract
    The electrohydrodynamic (EHD) vortices produced by an electric current in freely suspended liquid crystal (LC) films of N-(4-methoxybenzylidene)-4- butylaniline (MBBA), convert to a pure rotation in the presence of external electric field (E ext) perpendicular to the current direction. Here, the direction and strength of the rotation are precisely under control by our self-made device called "liquid-film motor". In this paper, we present experimental observations of the EHD fluid flow when external electric field varies from zero to a value in which pure rotation on the liquid crystal (LC) film is observed. We also show experimentally that the presence of external electric field causes a... 

    Electrically rotating suspended films of polar liquids

    , Article Experiments in Fluids ; Volume 50, Issue 2 , August , 2011 , Pages 419-428 ; 07234864 (ISSN) Shirsavar, R ; Amjadi, A ; Tonddast Navaei, A ; Ejtehadi, M. R ; Sharif University of Technology
    Abstract
    Controlled rotation of a suspended soap water film, simply generated by applying an electric field, has been reported recently. The film rotates when the applied electric field exceeds a certain threshold. In this study, we investigate the phenomenon in films made of a number of other liquids with various physical and chemical properties. Our measurements show that the intrinsic electrical dipole moments of the liquid molecules seems to be vital for the corresponding film rotation. All the investigated rotating liquids have a molecular electric dipole moment of above 1 Debye, while weakly polar liquids do not rotate. However, the liquids investigated here cover a wide range of physical... 

    Impact of nonlinear absorption on propagation of microwave in a plasma filled rectangular waveguide

    , Article Waves in Random and Complex Media ; Volume 26, Issue 3 , 2016 , Pages 272-283 ; 17455030 (ISSN) Sobhani, H ; Vaziri, M ; Rooholamininejad, H ; Bahrampour, A. R ; Sharif University of Technology
    Taylor and Francis Ltd 
    Abstract
    In collisional and ponderomotive predominant regimes, the propagation of microwave in rectangular waveguide filled with collisional plasma is investigated numerically. The dominant mode is excited through an evacuated waveguide and then enters a similar and co-axis waveguide filled with plasma. In collisional predominant regime, the amplitude of electric field is oscillated along propagation path; outset of propagation path due to the electron-ion collision, the intensity oscillations are reduced. Afterward, under competition between the collisional nonlinearity and absorption, the intensity is increased, so the electron density peak is created in middle of waveguide. In ponderomotive... 

    Geometrically modified einzel lenses, from the conventional cylindrical einzel lens to cubic and continuous einzel lens

    , Article IEEE Transactions on Plasma Science ; Volume 45, Issue 5 , 2017 , Pages 828-835 ; 00933813 (ISSN) Riazi, A ; Yasrebi, N ; Monjezi, H ; Rashidian, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    New geometrical counterparts to the conventional Einzel lens, cubic, and the continuous body electrostatic (CBE) lenses are introduced and their performances are investigated in terms of different aberrations and input beam properties. Design curves for the continuous body electrostatic lens are presented. Relative sensitivity is proposed as a figure of merit, based on which the focusing characteristics of the two new lenses are compared with that of a conventional Einzel, and a quadrupole lenses of the same size, as well. Moreover, performance and characteristics of the lenses are compared in terms of their corresponding sensitivities to the applied voltage and the incidence beam... 

    Electric field enhanced synthesis of copper hydroxide nanostructures for supercapacitor application

    , Article Nano ; Volume 12, Issue 1 , 2017 ; 17932920 (ISSN) Sepahvand, S ; Ghasemi, S ; Sanaee, Z ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2017
    Abstract
    Electric field enhanced approach has been used to synthesize different copper hydroxide morphologies as high-performance supercapacitors electrode materials. Employing this efficient, simple and low cost method, various shapes such as rod, flower and cube with an average grain size of 30nm to 1μm were obtained on the copper substrate. The results revealed that applied electric field considerably accelerates the formation time of nanostructures from several days to close to 1min, where some of the desired nanostructures were obtained even in 1s. The electrochemical properties of different morphologies were compared using cyclic voltammograms and charge/discharge tests and electrochemical... 

    On the performance of high voltage electrospray echnique for producing nanoparticles

    , Article 26th Iranian Conference on Electrical Engineering, ICEE 2018, 8 May 2018 through 10 May 2018 ; 2018 , Pages 283-288 ; 9781538649169 (ISBN) Kaboli, S ; Naghibi Nasab, J ; Elyasi, M ; Zarrabi, R ; Vosoghi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Electrospray technique is one of the commonly used methods for generating nanoparticles. In this method, the chemical solution which consists of a polymer and its solvent are injected into an electric field via a nozzle. At the end of this nozzle, due to electric forces, a certain part of this liquid is separated. Then, the separated part is divided into smaller particles and the solvent is evaporated and hence, the nanoparticles are acquired. Produced nanoparticales are collected in deionized water placed under the certain distant from nozzle. However, construction of this method is generally based on practical results. In this paper, modeling and performance evaluation of high voltage... 

    Liquid jet trajectory and droplet path influenced by combined cross flow and electric fields

    , Article Chemical Engineering Science ; Volume 181 , 18 May , 2018 , Pages 114-121 ; 00092509 (ISSN) Rajabi, A ; Morad, M. R ; Rahbari, N ; Pejman Sereshkeh, S. R ; Razavi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This study investigates an ethanol liquid jet subjected to combination of an air crossflow and a normal electric field. The results on the liquid jet trajectory and subsequent droplets flight paths are presented. The liquid jet trajectory was found as a function of two non-dimensional quantities; the liquid jet to the crossflow momentum ratio and the electroinertial number. The electroinertial number is defined as the ratio between the liquid jet specific momentum and the electric force. A correlation is introduced for the jet trajectory in low crossflow speeds and electric field intensities. The same two quantities control the detached droplets flight paths. Satellite droplets flight angles...