Loading...
Search for: electric-fields
0.011 seconds
Total 227 records

    Structural and dielectric properties of Sr4Zn2Fe36O60 U-type hexaferrites with optimized Gd contents and sintered by a two-step process

    , Article Ceramics International ; Volume 48, Issue 19 , 2022 , Pages 27739-27749 ; 02728842 (ISSN) Idrees, M ; Khan, M. A ; Gulbadan, S ; Mahmood, K ; Ashraf, G. A ; Akhtar, M. N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The structural and dielectric properties of Gadolinium substituted U-type hexaferrites (Sr4Zn2Fe36O60) were investigated. The samples were synthesized via the Sol-gel auto combustion route. In a muffle furnace, these samples were sintered for 5 h at 1250 °C. The pellets of synthesized powder samples were characterized by XRD, PL, Dielectric, FTIR, and Raman spectroscopies. Structural elucidation of Sr4Zn2Fe36-xGdxO60 was done via XRD. The obtained XRD patterns were matched with the prior literature. The impact of Gd3+ substitutions was measured on all the lattice parameters. Lattice constants “a" and “c" were found between 5.871 and 5.900 Å and 111.76–112.23 Å, respectively. The PL spectra... 

    Dynamics of electrostatic interaction and electrodiffusion in a charged thin film with nanoscale physicochemical heterogeneity: Implications for low-salinity waterflooding

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 650 , 2022 ; 09277757 (ISSN) Pourakaberian, A ; Mahani, H ; Niasar, V ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The slow kinetics of wettability alteration toward a more water-wetting state by low-salinity waterflooding (LSWF) in oil-brine-rock (OBR) systems is conjectured to be pertinent to the electrokinetic phenomena in the thin brine film. We hypothesize that the nanoscale physicochemical heterogeneities such as surface roughness and surface charge heterogeneity at the rock/brine interface control further the dynamics of electrodiffusion and electrostatic disjoining pressure (Πel), thus the time-scale and the magnitude of the low salinity effect (LSE). In this regard, film-scale computational fluid dynamics (CFD) simulations were performed. The coupled Poisson-Nernst-Planck (PNP) equations were... 

    Influence of pulsed direct current on the growth rate of intermetallic phases in the Ni–Al system during reactive spark plasma sintering

    , Article Scripta Materialia ; Volume 216 , 2022 ; 13596462 (ISSN) Abedi, M ; Asadi, A ; Sovizi, S ; Moskovskikh, D ; Vorotilo, S ; Mukasyan, A ; Sharif University of Technology
    Acta Materialia Inc  2022
    Abstract
    The effect of pulsed direct current (PDC) on solid-state diffusion in the Ni–Al binary system was investigated. Two experimental schemes were employed: in the presence and absence of an electric field. The diffusion couples were heat-treated for 1.5, 3, and 5 h at 803, 833, and 863 K. Under the investigated conditions, only two intermetallic phases (NiAl3 and Ni2Al3) formed at the boundary of the metals. It was shown that the PDC passing through the diffusion couple significantly enhanced the growth rates of both phases. The apparent reaction–diffusion coefficients were DNiAl3=4.0×10−9exp(−[Formula presented]) and DNi2Al3=9.7×10−9exp(−[Formula presented]) in the field-assisted scheme,... 

    Modeling of a vertical tunneling transistor based on Gr-hBN- χ 3borophene heterostructure

    , Article Journal of Applied Physics ; Volume 132, Issue 3 , 2022 ; 00218979 (ISSN) Abbasi, R ; Faez, R ; Horri, A ; Moravvej Farshi, M. K ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    We present a computational study on the electrical behavior of the field-effect transistor based on vertical graphene-hBN- χ 3 borophene heterostructure and vertical graphene nanoribbon-hBN- χ 3 borophene nanoribbon heterostructure. We use nonequilibrium the Green function formalism along with an atomistic tight-binding (TB) model. The TB parameters are calculated by fitting tight-binding band structure and first-principle results. Also, electrical characteristics of the device, such as ION/IOFF ratio, subthreshold swing, and intrinsic gate-delay time, are investigated. We show that the increase of the hBN layer number decreases subthreshold swing and degrades the intrinsic gate-delay time.... 

    Computational study of an integrated microfluidic device for active separation of RBCs and cell lysis

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 174 , 2022 ; 02552701 (ISSN) Jalilvand, E ; Shamloo, A ; Gangaraj, M. H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Separation and lysis of RBCs play an important role in diagnosis of different diseases. Although they have been partially studied in several researches, a comprehensive study on integrating both separation and lysis units on a single chip has been seen rarely in the literature. Also, the factors related to the chemical lysis process have not been investigated in detail. In this study, we introduce a novel microfluidic channel design for sequential RBC's separation and lysis. For the separation part, an active method with an electric field was applied to the cells. Besides, a novel mixer was designed for mixing the cell solution and lysis reagent. In the lysis section, we used a mathematical... 

    Quantum nonlinear planar Hall effect in bilayer graphene: An orbital effect of a steady in-plane magnetic field

    , Article Physical Review B ; Volume 106, Issue 24 , 2022 ; 24699950 (ISSN) Kheirabadi, N ; Langari, A ; Sharif University of Technology
    American Physical Society  2022
    Abstract
    We study the quantum nonlinear planar Hall effect in bilayer graphene under a steady in-plane magnetic field. When time-reversal symmetry is broken by the magnetic field, a charge current occurs in the second-order response to an external electric field as a result of the Berry curvature dipole in momentum space. We show that a nonlinear planar Hall effect originating from the anomalous velocity is caused by an orbital effect of an in-plane magnetic field on electrons in bilayer graphene in the complete absence of spin-orbit coupling. Taking into account the symmetry analysis, we derive the dominant dependence of the Berry curvature dipole moment on the magnetic field components. Moreover,... 

    A novel analytical model for a circularly-polarized, ferrite-based slot antenna by solving an integral equation for the electric field on the circular slot

    , Article Waves in Random and Complex Media ; Volume 32, Issue 2 , 2022 , Pages 509-528 ; 17455030 (ISSN) Heydari, M.B ; Ahmadvand, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    We propose and analyze a circularly polarized slot antenna built on a ferrite substrate which is saturated normal to its plane and metalized on both sides. The antenna is built by etching a circular slot in the top metal layer. The antenna operates in the frequency range where the effective permeability of ferrite is negative. An accurate analytical model is derived for the antenna by solving the integral equation for the electric field on the circular slot. The results obtained are in good agreement with numerical simulations. Using the analytical results, a practical antenna is designed that uses a microstrip feed line. For an antenna with inner and outer radii of 4.9 and 5.9 mm, the...