Loading...
Search for: electric-power-transmission-networks
0.008 seconds

    Pave the way for sustainable smart homes: A reliable hybrid AC/DC electricity infrastructure

    , Article Electric Power Systems Research ; Volume 210 , 2022 ; 03787796 (ISSN) Ardalan, C ; Vahidinasab, V ; Safdarian, A ; Shafie khah, M ; Catalão, J. P. S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The development of emerging smart grid technologies has led to more and more penetration of renewable energy resources and electric energy storage in the residential sectors. Besides, owing to the significant evolution of power electronic devices, there is a rapid growth in penetration of DC loads and generations, such as PV and electric vehicles (EVs), into the buildings and homes as a building block of the future smart cities. This is despite the fact that the electricity infrastructure of the conventional buildings is designed based on AC electricity and as a result, there would be a lot of losses due to the frequent power conversion from AC to DC and vice versa. Besides, according to a... 

    Optimal energy management system of IoT-Enabled large building considering electric vehicle scheduling, distributed resources, and demand response schemes

    , Article Sensors ; Volume 22, Issue 19 , 2022 ; 14248220 (ISSN) Fei, L ; Shahzad, M ; Abbas, F ; Muqeet, H. A ; Hussain, M. M ; Bin, L ; Sharif University of Technology
    MDPI  2022
    Abstract
    In the energy system, various sources are used to fulfill the energy demand of large buildings. The energy management of large-scale buildings is very important. The proposed system comprises solar PVs, energy storage systems, and electric vehicles. Demand response (DR) schemes are considered in various studies, but the analysis of the impact of dynamic DR on operational cost has been ignored. So, in this paper, renewable energy resources and storages are integrated considering the demand response strategies such as real-time pricing (RTP), critical peak pricing (CPP), and time of use (ToU). The proposed system is mapped in a linear model and simulated in MATLAB using linear programming... 

    An economic evaluation framework for cryptocurrency mining operation in microgrids

    , Article International Journal of Electrical Power and Energy Systems ; Volume 142 , 2022 ; 01420615 (ISSN) Hajipour, E ; Khavari, F ; Hajiaghapour Moghimi, M ; Azimi Hosseini, K ; Vakilian, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The introduction of cryptocurrencies as a new form of money has attracted a tremendous amount of attention in recent years. This new financial paradigm relies on miners to validate transactions by running their cryptocurrency mining devices (CMDs). Nowadays, the significant profitability of the mining business has tempted a large number of private players in the electrical industry to employ their renewable energy resources to mine digital currency. Here, microgrid (MG) owners may use their excessive generated power to mine digital money instead of exporting it to the main grid. This paper is devoted to investigate the influential potentials of this trending business on distribution networks... 

    Bi-level planning of distributed energy resources into existing transmission grids: Pathway to sustainable energy systems

    , Article IET Generation, Transmission and Distribution ; Volume 16, Issue 24 , 2022 , Pages 4963-4979 ; 17518687 (ISSN) Ranjbar, H ; Saber, H ; Sharifzadeh, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    This paper presents a novel stochastic planning framework for the integration of renewable distributed energy resources (DERs) into existing power systems without relying on new investments in the transmission networks. The upper-level problem of the proposed model aims at minimizing the total expected social cost of supplying demand that includes the expected cost of getting energy from conventional generating units and DERs, the congestion cost of transmission networks, and the greenhouse gas (GHG) emission cost, while each of the privately invested DER satisfies a specified rate of return. The lower-level problem clears the electricity market to find locational marginal prices (LMPs) and... 

    A Bi-Level framework for expansion planning in active power distribution networks

    , Article IEEE Transactions on Power Systems ; Volume 37, Issue 4 , 2022 , Pages 2639-2654 ; 08858950 (ISSN) Kabirifar, M ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Pourghaderi, N ; Dehghanian, P ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper presents a new framework for multistage expansion planning in active power distribution networks, in which the distribution system operator (DSO) considers active network management by clearing the local energy market at the distribution level. The proposed model is formulated as a bi-level optimization problem, where the upper level minimizes the net present value of the total costs imposed to DSO associated with the investment and maintenance of the network assets as well as the network operation, while the lower level on clearing the local energy market captures the participation of distributed energy resource (DER) owners and demand aggregators to maximize the social welfare.... 

    Short-term resilience-oriented enhancement in smart multiple residential energy system using local electrical storage system, demand side management and mobile generators

    , Article Journal of Energy Storage ; Volume 52 , 2022 ; 2352152X (ISSN) Kashanizadeh, B ; Mohammadnezhad Shourkaei, H ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Recently, many investigations have been studied on the effects of the uncommon extreme events like hurricanes in electrical distribution grids. These events leads to damage to distribution grid equipments, and they are cause widespread blackouts. This paper presents short-term resilience enhancement of the residential sections against hurricane at day-ahead. The lines outage in the electrical distribution grid is implemented as stochastic modeling by hurricane. The resilience enhancement is done in the multiple energy systems such as integrated gas, heat and electrical. The three-stage multi-objective functions optimization is proposed for resilience-oriented enhancement. The proposed... 

    Model-free LQR design by Q-function learning

    , Article Automatica ; Volume 137 , 2022 ; 00051098 (ISSN) Farjadnasab, M ; Babazadeh, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Reinforcement learning methods such as Q-learning have shown promising results in the model-free design of linear quadratic regulator (LQR) controllers for linear time-invariant (LTI) systems. However, challenges such as sample-efficiency, sensitivity to hyper-parameters, and compatibility with classical control paradigms limit the integration of such algorithms in critical control applications. This paper aims to take some steps towards bridging the well-known classical control requirements and learning algorithms by using optimization frameworks and properties of conic constraints. Accordingly, a new off-policy model-free approach is proposed for learning the Q-function and designing the... 

    Peer-to-Peer energy sharing among smart energy hubs in an integrated heat-electricity network

    , Article Electric Power Systems Research ; Volume 206 , 2022 ; 03787796 (ISSN) Daryan, A. G ; Sheikhi, A ; Ashouri Zadeh, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    By increasing the penetration level of the combined heat and power systems and demand response programs between energy consumers in the distribution network, the interaction between electricity and the natural gas network becomes more complicated. This paper proposes a peer-to-peer (P2P) energy sharing scheme for energy trading among Smart Energy Hubs (S.E. Hubs) which can trade both electrical and thermal energy with each other to reduce their cost and, reduce their dependency to gas and electricity utility companies. A two-stage energy strategy is presented. In the first stage, the S.E. Hubs total social cost is reduced by finding the optimal energy sharing profiles. And, in the second... 

    Optimal scheduling of demand side load management of smart grid considering energy efficiency

    , Article Frontiers in Energy Research ; Volume 10 , 2022 ; 2296598X (ISSN) Balouch, S ; Abrar, M ; Abdul Muqeet, H ; Shahzad, M ; Jamil, H ; Hamdi, M ; Malik, A. S ; Hamam, H ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    The purpose of this research is to provide power grid energy efficiency solutions. In this paper, a comprehensive review and its optimal solution is proposed considering the various challenges of smart grid demand-side management. The main technique is based on a novel idea in the Smart Grid—demand response optimization which enables autonomous energy management on the demand side for a wide variety of customers. The first section of this research examines the smart grid issue and evaluates the state-of-the-art load management techniques in terms of the work’s scope. The demand-side load management architecture consists of three primary levels, two of them in line planning and low-cost... 

    Risk management framework of peer-to-peer electricity markets

    , Article Energy ; Volume 261 , 2022 ; 03605442 (ISSN) Seyedhossein, S. S ; Moeini Aghtaie, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Due to the acceleration of energy transition from fossil fuels to Distributed Energy Resources (DERs), the structure of the power industry (mainly generation and distribution) is changing. The emergence of the smart grid concept and Peer-to-Peer (P2P) electricity markets make local producers and consumers face new challenges and risks. Managing the risks that the participants in P2P markets are encountered is necessary to guarantee a sustainable penetration of such markets. This article provides a comprehensive risk analysis by implementing a proposed risk management framework to address the identification, classification, assessment, and mitigation of all risks that prosumers will face when... 

    A linearized transmission expansion planning model under N − 1 criterion for enhancing grid-scale system flexibility via compressed air energy storage integration

    , Article IET Generation, Transmission and Distribution ; Volume 16, Issue 2 , 2022 , Pages 208-218 ; 17518687 (ISSN) Mazaheri, H ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Dehghanian, P ; Khoshjahan, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The concept of flexibility is defined as the power systems’ ability to effectively respond to changes in power generation and demand profiles to maintain the supply–demand balance. However, the inherent flexibility margins required for successful operation have been recently challenged by the unprecedented arrival of uncertainties, driven by constantly changing demand, failure of conventional units, and the intermittent outputs of renewable energy sources (RES). Tackling these challenges, energy storage systems (ESS) as one important player of the new power grids can enhance the system flexibility. It, therefore, calls for an efficient planning procedure to ensure flexibility margins by... 

    Islanding detection for PV and DFIG using decision tree and AdaBoost algorithm

    , Article IEEE PES Innovative Smart Grid Technologies Conference Europe ; 2012 ; 9781467325974 (ISBN) Madani, S. S ; Abbaspour, A ; Beiraghi, M ; Dehkordi, P. Z ; Ranjbar, A. M ; Sharif University of Technology
    2012
    Abstract
    Under smart grid environment, islanding detection plays an important role in reliable operation of distributed generation (DG) units. In this paper an intelligent-based islanding detection algorithm for PV and DFIG units is proposed. Decision tree algorithm is used to classify islanding detection instances. This algorithm is rapid, simple, intelligible and easy to interpret. The error rate of this method is reduced by Adaptive Boosting (AdaBoost) technique. The proposed method is tested on a distribution system including PV, DFIG and synchronous generator. Probable events in the system are simulated under diverse operating states to generate classification data set. First and second order... 

    Stand alone performance of permanent magnet synchronous wind power generator with current source matrix converter

    , Article Electric Power Components and Systems ; Volume 43, Issue 8-10 , 2015 , Pages 1018-1027 ; 15325008 (ISSN) Hojabri, H ; Mokhtari, H ; Chang, L ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    A matrix converter is a voltage/current source AC/AC frequency converter. In grid-connected operation of a variable-speed permanent magnet synchronous wind power generator, the matrix converter is normally controlled as a voltage source converter. In this control method, the generator-side voltage is synthesized from the grid-side voltage source. However, in the stand-alone mode of operation, the grid-side stiff voltage source is not available, and the input filter of the matrix converter is unstable. In this article, a new control method is presented that controls a permanent magnet synchronous wind generator in a stand-alone mode with a matrix converter as a current source converter. The... 

    Stability and performance analysis of a single-stage grid-connected photovoltaic system using describing function theory

    , Article International Transactions on Electrical Energy Systems ; Volume 26, Issue 9 , 2016 , Pages 1898-1916 ; 20507038 (ISSN) Hejri, M ; Mokhtari, H ; Karimi, S ; Azizian, M. R ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    Challenging problems in the design and analysis of photovoltaic (PV) systems stem from the nonlinear current–voltage (I–V) characteristics of solar cells. This paper presents an analytical analysis based on a describing function method to investigate the transient and steady-state characteristics of a three-phase single-stage grid-connected PV system. In this study, the nonlinear I–V characteristic of the PV array is linearized around the operating point. The nonlinear dynamic of the maximum power point tracking controller is divided into two parts of continuous and discrete. For the continuous part, the common small-signal linearization is applied, while for the discontinuous part, a... 

    Plug-in hybrid electric vehicle battery charger with soft-switched dual-bridge resonant converter for smart grid applications

    , Article 7th IEEE International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2016, 27 June 2016 through 30 June 2016 ; 2016 ; 9781467386166 (ISBN) Akbari, R ; Ebrahimi, S ; Tahami, F ; Oraee, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Battery chargers are fundamental components for successful deployment of plug-in hybrid electric vehicles (PHEVs) into future smart grid. Recently, an integrated isolated bidirectional battery charger has been proposed for PHEV applications. The proposed charger eliminates the conventional bulky dc-link capacitor by feeding a dual-bridge resonant tank directly from the three-phase grid. The disadvantages associated with the presented charger are the high number of semiconductor switches which contribute to high cost and switching losses of converter as well as complicated control circuitry. In this paper, the previous structure is modified to address the aforementioned drawbacks and is... 

    Fuzzy based generation scheduling of power system with large scale wind farms

    , Article 2009 IEEE Bucharest PowerTech: Innovative Ideas Toward the Electrical Grid of the Future ; 2009 ; 9781424422357 (ISBN) Siahkali, H ; Vakilian, M ; Sharif University of Technology
    Abstract
    Wind power introduces a new challenge to system operators. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in its resource. In a power system involved largescale wind power generation scenario, wind intermittency could oblige the system operator to allocate a greater reserve power, in order to compensate the possible mismatch between predicted and the actual wind power output. This would increase the total operation cost. This paper presents a new approach in fuzzy based generation scheduling (GS) problem using mixed integer nonlinear programming (MINLP). While the reserve requirements, load generation balance and wind... 

    A filtering technique for three-phase power systems

    , Article IEEE Transactions on Instrumentation and Measurement ; Volume 58, Issue 2 , 2009 , Pages 389-396 ; 00189456 (ISSN) Karimi Ghartemani, M ; Karimi, H ; Bakhshai, A. R ; Sharif University of Technology
    Abstract
    A novel filter for use in three-phase power systems is introduced. When the input to the filter is a balanced three-phase set of signals, the filter suppresses noise and distortions and extracts a smooth three-phase fundamental component. When the input signal to the filter is unbalanced, it extracts the fundamental positive-sequence component of the input signal. The filter also estimates the magnitude, phase angle, and frequency of the signal and adaptively follows the variations in all these three variables. The characteristics of the filter, including its mathematical equations, stability analysis, steady state, and dynamic responses, are discussed in this paper. The filter highly... 

    Semiactive viscous tensile bracing system

    , Article Journal of Structural Engineering ; Volume 135, Issue 4 , 2009 , Pages 425-436 ; 07339445 (ISSN) Rahani, E.K ; Bakhshi, A ; Golafshani, A.A ; Sharif University of Technology
    2009
    Abstract
    Structural control using energy dissipater devices is emerging as a heavily researched strategy in earthquake engineering. Among several control systems, semiactive control is usually possible and efficient. In this research, a semiactive energy dissipating bracing system based on a viscous damper is proposed. In the conventional bracing systems, it is assumed that the braces can buckle under compression. Therefore, a semiactive on-off brace strategy is implemented to improve the conventional brace performance. Further, an energy absorbing mechanism is implemented. In the proposed system, the buckling of the member is prevented by implementing a one-way valve device. The permanent story... 

    An agent-based model for optimal voltage control and power quality by electrical vehicles in smart grids

    , Article 15th International Conference on Distributed Computing and Artificial Intelligence, DCAI 2018, 20 June 2018 through 22 June 2018 ; Volume 801 , 2019 , Pages 388-394 ; 21945357 (ISSN); 9783319996073 (ISBN) Hadizade, A ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The electric power industry is the main part of Science development, and today, with the advent of technology, the demand for electric power has been expanded. On the other hand, smart grids are developing heavily. One of the notable features of these networks is the presence of a plug-in hybrid electric vehicle (PHEV). The addition of these cars to the network has its own advantages and disadvantages. One of the most important issues in smart grids is network management and control of critical system parameters. In this paper the effect of these cars on the grid is investigated. These vehicles impose an increase in production capacity in the uncontrolled charge mode. They also have the... 

    Techno-economic optimization of biogas-fueled micro gas turbine cogeneration systems in sewage treatment plant

    , Article Energy Conversion and Management ; Volume 218 , 15 August , 2020 Movahed, P ; Avami, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The aim of this paper is to investigate the feasibility of a combined cooling, heating, and power generation system with a micro turbine using biogas as the fuel to supply the heat and electricity demands in a real wastewater treatment plant. The plant is optimized using the system's total cost rate and the amount of the produced biogas as objective functions. The anaerobic digester is modeled using the ADM1 model. The optimization variables include digester hydraulic retention time, compressor pressure ratio, isentropic compressor efficiency, recuperator pinch time temperature, turbine isentropic efficiency, turbine input temperature, and the number of micro turbines. In the first scenario...