Loading...
Search for: electrochemical-impedance-spectroscopy
0.014 seconds
Total 177 records

    On the pseudocapacitive behavior of nanostructured molybdenum oxide

    , Article Journal of Solid State Electrochemistry ; Volume 14, Issue 4 , 2010 , Pages 643-650 ; 14328488 (ISSN) Farsi, H ; Gobal, F ; Raissi, H ; Moghiminia, S ; Sharif University of Technology
    Abstract
    Nanostructured molybdenum oxide was potentiodynamically deposited onto a stainless steel surface from an aqueous bath by cycling the potential between 0 and -0.75 V vs. Ag/AgCl. The deposit consisted of particulates in the range of 30 to 80 nm. Electrochemical studies under galvanostatic charge/discharge and also impedance spectroscopy revealed capacitive behavior in the potential range of -0.3 to -0.55 V vs. Ag/AgCl with the value of 477 F g-1 at 0.1 mA/cm2. An equivalent circuit comprising of three parallel branches consisting of double-layer capacitance, Warburg impedance, and a constant phase element signifying pseudo-capacitance each coupled with their corresponding resistances was... 

    In situ two-step preparation of 3D NiCo-BTC MOFs on a glassy carbon electrode and a graphitic screen printed electrode as nonenzymatic glucose-sensing platforms

    , Article ACS Sustainable Chemistry and Engineering ; Volume 8, Issue 38 , 2020 , Pages 14340-14352 Ezzati, M ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    In the present study, a rational two-step strategy is employed for the green, fast, very simple, and highly controllable synthesis of the bimetallic nickel-cobalt-based metal-organic frameworks (MOFs) on glassy carbon substrates by in situ transformation of nickel-cobalt-layered double hydroxide nanosheet (NiCo-LDHs NSs) intermediates into nickel-cobalt-benzene tricarboxylic acid MOFs (E-NiCo-BTC MOFs). The structural characteristics of the electrode materials in each step were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, elemental mapping, field emission scanning electron microscopy, and transmittance electron microscopy.... 

    Zinc oxide/copper sulfide nanorods as a highly catalytic counter electrode material for quantum dot sensitized solar cells

    , Article RSC Advances ; Volume 6, Issue 57 , 2016 , Pages 51894-51899 ; 20462069 (ISSN) Eskandari, M ; Ghahary, R ; Shokri, M ; Ahmadi, V ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Copper sulfide deposited ZnO nanorods (ZnO NRs/CuS) have been applied as a new counter electrode material with high electrocatalytic activity towards polysulfide electrolyte, which results in the formation of a highly efficient counter electrode for QDSSCs. It was observed from the current density-voltage (J-V) characteristics that the short-circuit current density (Jsc), power conversion efficiency (PCE), and fill factor (FF) were enhanced from 7.63 mA cm-2 to 14.48 mA cm-2, 1.59% to 4.18%, and 0.29 to 0.38, respectively, when a bare CuS counter electrode was changed to a ZnO NRs/CuS counter electrode. Electrochemical impedance spectroscopy (EIS), Tafel polarization and cyclic voltammetry... 

    Synthesis, characterization and performance determination of an Ag@Pt/C electrocatalyst for the ORR in a PEM fuel cell

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 45 , 2016 , Pages 20720-20730 ; 03603199 (ISSN) Esfandiari, A ; Kazemeini, M ; Bastani, D ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Ag@Pt nanoparticles synthesized with different Ag/Pt mass ratios utilizing ultrasonic treatment method. These materials were supported on Vulcan XC-72 and utilized as cathode in a proton exchange membrane fuel cell (PEMFC). The morphology of this material characterized through the x-ray diffraction (XRD), induced coupled plasma atomic emission spectroscopy (ICP-OES) as well as; high resolution transmission electron microscopy (HRTEM) techniques. To begin with, it was proven that, the prepared Ag@Pt/C catalyst possessed a core–shell nanostructure. The electrochemical properties of this material investigated through the Cyclic Voltammetry (CV), linear sweep voltammetry (LSV) and... 

    A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells

    , Article Journal of Materials Chemistry A ; Volume 4, Issue 35 , 2016 , Pages 13488-13498 ; 20507488 (ISSN) Behrouznejad, F ; Shahbazi, S ; Taghavinia, N ; Wu, H. P ; Wei Guang Diau, E ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Organic-inorganic halide perovskite solar cells have attracted considerable interest due to their high efficiency and low fabrication cost. Au and Ag are usually used as the back contact metals but have limitations such as Au is too expensive and Ag is unstable. Here, Pt, Au, Ni, Cu, Cr and Ag were studied as the back contact electrodes for perovskite solar cells. We looked at how the work function of metals can affect their photovoltaic characteristics. The compositional and electrical characterizations were studied using X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The general trend observed was that the shunt resistance and open-circuit voltage... 

    Effect of pH and carbon nanotube content on the corrosion behavior of electrophoretically deposited chitosan-hydroxyapatite-carbon nanotube composite coatings

    , Article Ceramics International ; Volume 39, Issue 5 , July , 2013 , Pages 5393-5402 ; 02728842 (ISSN) Batmanghelich, F ; Ghorbani, M ; Sharif University of Technology
    2013
    Abstract
    In the first stage, chitosan (CH)-hydroxyapatite (HA)-multiwalled carbon nanotube (MWCNT) composite coatings were synthesized by electrophoretic deposition technique (EPD) on 316L stainless steel substrates at different levels of pH and characterized by X-ray diffraction (XRD), Raman spectroscopy, FTIR and field emission scanning electron microscopy (FESEM). A smooth distribution of HA and MWCNT particles in a chitosan matrix with strong interfacial bonding was obtained. In the next stage, effects of pH and MWCNT content of the suspension on the corrosion behavior and deposition mechanism were studied. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) curves... 

    Electrocrystallization of Ni nanocones from chloride-based bath using crystal modifier by electrochemical methods

    , Article Journal of Alloys and Compounds ; Volume 818 , 2020 Barati Darband, G ; Aliofkhazraei, M ; Dolati, A ; Rouhaghdam, A. S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The early stages of nucleation and growth of nanostructures can control the shape and final size of the fabricated nanostructure. Therefore, the study of the nucleation and growth mechanism of nanostructures is of great importance. The purpose of this study is to investigate the nucleation and growth mechanism of nickel nanocones from a chloride-based bath containing ethylene ammonium dichloride as a crystal modifier. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry tests were employed to investigate the nucleation and growth mechanism and also the mechanism of crystal modifier performance on the growth of nanocones. Electrochemical studies revealed... 

    The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures with different phase compositions

    , Article Ceramics International ; Volume 39, Issue 7 , 2013 , Pages 7343-7353 ; 02728842 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    Dye-sensitized solar cells (DSCCs) in the form of mixed nanostructures containing TiO2 nanoparticles and nanowires with different weight ratios and phase compositions are reported. X-ray diffraction and field emission scanning electron microscopy analyses revealed that the synthesized TiO 2 nanoparticles had average crystallite size in the range 21-39 nm, whereas TiO2 nanowires showed diameter in the range 20-50 nm. The indirect optical band gap energy of TiO2 nanowires, anatase- and rutile-TiO2 nanoparticles was calculated to be 3.35, 3.28 and 3.17 eV, respectively. The power conversion efficiency of the solar cells changed with nanowire to nanoparticle weight ratio, reaching a maximum at a... 

    Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications

    , Article Electrochimica Acta ; Volume 89 , February , 2013 , Pages 90-97 ; 00134686 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    A novel simple synthetic procedure for fabrication of high surface area nanostructured TiO2 electrode with uniform particles for photovoltaic application is reported. Modifying the TiO2 particulate sol by pH adjustment together with employment of a polymeric agent, so-called polymeric gel process, was developed. The polymeric gel process was used to deposit nanostructured thick electrode by dip coating incorporated in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) analysis revealed that deposited film was composed of primary nanoparticles with average crystallite size in the range 21-39 nm. Field emission scanning electron microscope (FE-SEM) images showed that deposited film... 

    Controlling electron transport rate and recombination process of TiO 2 dye-sensitized solar cells by design of double-layer films with different arrangement modes

    , Article Electrochimica Acta ; Volume 78 , 2012 , Pages 384-391 ; 00134686 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    Abstract
    TiO 2 dye-sensitized solar cells (DSSCs) in the form of double-layer films, containing an under-layer and an over-layer, with various crystal structures (i.e., anatase and rutile phases) and morphologies (i.e., nanoparticle and nanowire) were reported. It was found that the photovoltaic performance of TiO 2 DSSCs depends on the morphology, crystal structure, light scattering effect, optical band gap energy and arrangement of the under- and over-layer films. The double-layer solar cell made of anatase-TiO 2 nanoparticles as the under-layer and anatase-TiO 2 nanowires as the over-layer (i.e., AW solar cell) showed the highest power conversion efficiency and fill factor of 6.34% and 62.6%,... 

    Designing highly stable yet efficient solar cells based on a new triple-cation quasi-2D/3D hybrid perovskites family

    , Article Ceramics International ; Volume 45, Issue 16 , 2019 , Pages 20788-20795 ; 02728842 (ISSN) Bakhshayesh, A. M ; Abdizadeh, H ; Mirhosseini, M ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In a nutshell, this study outlines the efficacy of mixed dimensional (2D/3D) hybrid perovskites by developing a new class of triple-cation quasi-2D perovskites having (S0.97S′0.03)2[Cs0.05(FA0.97MA0.03)0.95]n-1Pbn(I0.07Br0.03)3n+1 general composition, in which a mixture of ý5-ammonium valeric acid ýiodideý (S) and tetra-n-octylammonium ýbromide (S′) was employed ýas a spacer.ý The effect of the 2D and 3D structures molar ratios (i.e., C=2D/2D+3D) in the range of 0-100 % on photovoltaic performance of the deposited photoanodes was systemically studied. Drawing a comparison between such compounds and an analogous triple-cation 3D counterpart (i.e., Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3) as... 

    Facile and ultra-sensitive voltammetric electrodetection of Hg2+in aqueous media using electrodeposited AuPtNPs/ITO

    , Article Analytical Methods ; Volume 13, Issue 24 , 2021 , Pages 2688-2700 ; 17599660 (ISSN) Bagheri Hariri, M ; Siavash Moakhar, R ; Sharifi Abdar, P ; Zargarnezhad, H ; Shone, M ; Rahmani, A. R ; Moradi, N ; Niksefat, V ; Shayar Bahadori, K ; Dolati, A ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    In this study, we have investigated the use of electrodeposited Au-Pt nanoparticles (AuPtNPs) on indium tin oxide (ITO) for the detection of Hg2+ heavy ions in water samples. The mechanism of AuPtNP electrocrystallization on ITO glass in an aqueous solution containing 0.5 mM HAuCl4 + 0.5 mM H2PtCl6 is described for the first time. The nucleation mechanism of monometallic AuNPs on ITO was found to be progressive; however, a transition from progressive to instantaneous was observed for bimetallic AuPtNPs at elevated overpotentials. The modified ITOs were then assessed for the electrodetection of Hg2+ in aqueous media. It was shown by differential pulse voltammetry (DPV) that the sensitivity of... 

    The investigation of the kinetics and mechanism of hydrogen evolution reaction on tin

    , Article International Journal of Hydrogen Energy ; Volume 32, Issue 12 , 2007 , Pages 1755-1761 ; 03603199 (ISSN) Azizi, O ; Jafarian, M ; Gobal, F ; Heli, H ; Mahjani, M. G ; Sharif University of Technology
    2007
    Abstract
    The mechanism and kinetics of the hydrogen evolution reaction (HER) on tin electrode in 0.1 M H2SO4 solution were studied using the methods of steady-state polarization and electrochemical impedance spectroscopy. The simulation of the data obtained from these two methods, using nonlinear fitting procedure allowed us to determine the rate constants of Volmer, Heyrovsky and Tafel steps associated with the mentioned reaction. The kinetic results indicate that HER mechanism at low negative potentials is a serial combination of Volmer step and parallel Tafel and Heyrovsky steps. At high negative potentials where the hydrogen coverage reaches its limiting value, a Tafel line with the slope of -... 

    Corrosion resistance and photocatalytic activity evaluation of electrophoretically deposited TiO 2 -rGO nanocomposite on 316L stainless steel substrate

    , Article Ceramics International ; Volume 45, Issue 11 , 2019 , Pages 13747-13760 ; 02728842 (ISSN) Azadeh, M ; Parvizy, S ; Afshar, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    TiO 2 -rGO nanocomposite coatings were obtained by electrophoretic deposition (EPD) technique of TiO 2 nanoparticles and graphene oxide (GO) on stainless steel substrate. First, GO particles were synthesized using a modified Hummers' method. GO was reduced electrochemically to form a coating in the presence of nano-sized TiO 2 particles. The influences of different parameters such as GO concentration, coupling co-electro-deposition parameters (electrophoretic duration and voltage) on thickness, surface morphology and, corrosion behavior of the as-synthesized TiO 2 -rGO nanocomposite coatings were systematically surveyed. The morphology and microstructure were investigated by field emission... 

    Al-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-Ion batteries

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 5 , 2021 , Pages 6369-6378 ; 09574522 (ISSN) Ashuri, M ; Golmohammad, M ; Soleimany Mehranjani, A. R ; Faghihi Sani, M ; Sharif University of Technology
    Springer  2021
    Abstract
    Cubic phase Li7La3Zr2O12 (LLZO) is a promising solid electrolyte for next-generation Li-ion batteries. In this work, the combustion sol–gel technique is used to prepare an Al-doped LLZO solid electrolyte. The crystal structure is investigated, and the cubic phase is confirmed. Densification properties were investigated using SEM and optical dilatometry. The densification of the Al-doped sample takes place in two stages through two different shrinkage rates. Using 0.25 mol Al-dopant 94% relative density is achieved at 1100 °C. The effect of Al-doping on electrochemical properties is investigated in detail using AC impedance spectroscopy. The result indicates that the optimum concentration of... 

    Influence of annealing on the electrochemical behavior of finemet amorphous and nanocrystalline alloy

    , Article Journal of Materials Science ; Volume 45, Issue 2 , 2010 , Pages 546-551 ; 00222461 (ISSN) Asghari Shivaee, H ; Nozad Golikand, A ; Madaah Hosseini, H. R ; Asgari, M ; Sharif University of Technology
    Abstract
    The electrochemical corrosion behavior of finemet alloy at various heat treatment temperatures was investigated. Thermal behavior and structural changes were studied using differential scanning calorimetry and X-ray diffractometry, respectively. The electrochemical corrosion of amorphous and annealed samples was investigated in 0.10 M NaOH solution using electrochemical impedance spectroscopy and linear sweep voltammetery. Changes in morphology of the samples before and after corrosion were characterized using optical microscope. The results showed that structural relaxation and nanocrystallization during the heat treatment improved corrosion behavior of the alloy. The heat-treated alloy at... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; 2017 , Pages 1-14 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Zad, A. I ; Sharif University of Technology
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    One step electrodeposition of V2O5/polypyrrole/graphene oxide ternary nanocomposite for preparation of a high performance supercapacitor

    , Article International Journal of Hydrogen Energy ; Volume 42, Issue 33 , 2017 , Pages 21073-21085 ; 03603199 (ISSN) Asen, P ; Shahrokhian, S ; Iraji zad, A ; Sharif University of Technology
    Abstract
    A new ternary nanocomposite based on graphene oxide (GO), polypyrrole (PPy) and vanadium pentoxide (V2O5) is obtained via one-step electrochemical deposition process. Electrochemical deposition of V2O5, PPy and GO on a stainless steel (SS) substrate is conducted from an aqueous solution containing vanadyl acetate, pyrrole and GO to get V2O5/PPy/GO nanocomposite. Characterization of the electrode material is carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). The electrochemical performance of the as-prepared nanocomposite is evaluated by... 

    A high performance supercapacitor based on graphene/polypyrrole/Cu2O-Cu(OH)2 ternary nanocomposite coated on nickel foam

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 12 , 2017 , Pages 6508-6519 ; 19327447 (ISSN) Asen, P ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    A simple and low-cost electrochemical deposition method is used to prepare reduced graphene oxide/polypyrrole/Cu2O-Cu(OH)2 (RGO/PPy/Cu2O-Cu(OH)2) ternary nanocomposites as the electrode material for supercapacitor application. First, graphene oxide-polypyrrole (GO/PPy) nanocomposite is electrochemically synthesized on Ni foam by electro-oxidation of pyrrole monomer in an aqueous solution containing GO and Tiron. Subsequently, the GO/PPy film is converted to the corresponding reduced form (RGO/PPy) by an effective and eco-friendly electrochemical reduction method. Then, a thin layer of Cu2O-Cu(OH)2 is formed on RGO/PPy film by chronoamperometry. The RGO/PPy/Cu2O-Cu(OH)2 nanocomposite is... 

    Ternary nanostructures of Cr2O3/graphene oxide/conducting polymers for supercapacitor application

    , Article Journal of Electroanalytical Chemistry ; Volume 823 , 2018 , Pages 505-516 ; 15726657 (ISSN) Asen, P ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Abstract
    In this work, nanostructured composites of Cr2O3-graphene oxide (Cr2O3/GO) with conducting polymers; polyaniline (PANI) and polypyrrole (PPy) with the shape of cauliflower were synthesized via s simple and low cost one-step chronoamperometry method. The structures and morphologies of the resulting ternary nanocomposites were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The electrochemical capacitive properties of the prepared nanocomposites were evaluated by using cycle voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The...