Loading...
Search for: electrochemical-impedance-spectroscopy
0.009 seconds
Total 177 records

    PH-Sensitive polydopamine–La (III) complex decorated on carbon nanofiber toward on-demand release functioning of epoxy anti-corrosion coating

    , Article Langmuir ; Volume 38, Issue 38 , 2022 , Pages 11707-11723 ; 07437463 (ISSN) Ghaderi, M ; Saadatabadi, A. R ; Mahdavian, M ; Haddadi, S. A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The high aspect ratio and unique thermal and electrical characteristics of carbon nanofiber (CNF) made it an ideal physical barrier against the penetration of corrosive ions. However, the poor compatibility of the CNF with the polymer matrix and the lack of active corrosion inhibitors are the key limitations of this nanomaterial, resulting in short-term anti-corrosion resistance. An intelligent self-healing epoxy (EP) coating, including CNF modified with a polydopamine (PDA)-La3+ complex, was successfully fabricated to overcome these issues. Electrochemical impedance spectroscopy (EIS) evaluation implied that mild steel (MS) submerged in a 3.5 wt % NaCl solution containing the CNF-PDA-La... 

    PO43--Loaded zif-8-type metal-organic framework-decorated multiwalled carbon nanotube synthesis and application in silane coatings for achieving a smart corrosion protection performance

    , Article Industrial and Engineering Chemistry Research ; Volume 61, Issue 32 , 2022 , Pages 11747-11765 ; 08885885 (ISSN) Mohammadkhani, R ; Ramezanzadeh, M ; Fedel, M ; Ramezanzadeh, B ; Mahdavian, M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    In this research study, interfacial assembled nanoporous zeolitic imidazolate framework (ZIF-8) multiwalled oxidized carbon nanotubes (MW-OCNTs) were developed and introduced into a silane coating. To analyze the destructive behavior of the nanoparticles exposed to salty solutions with three distinctive pHs of 2, 7.5, and 12, various types of tests such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and inductively coupled plasma (ICP) were accomplished. The XRD test revealed that the main characteristic peaks of ZIF-8 were eliminated and/or their intensity decreased. In accordance with the obtained data from the XRD test, nanoparticles at pH = 2 had been... 

    Development of a nanocellulose composite based voltammetric sensor for vitamin B9 analysis

    , Article Current Nanoscience ; Volume 12, Issue 4 , 2016 , Pages 493-499 ; 15734137 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Sharif University of Technology
    Bentham Science Publishers B.V 
    Abstract
    As a B group vitamins, vitamin B9 is a Water-soluble vitamin which is produced by plants and microorganisms (bacteria and yeasts). Vitamin B9 plays an important role in the production of proteins and nucleic acids in body and also is one of the substances that prevents the development of neural tube defects in the fetus. Methods: Electrochemical behavior of vitamin B9 was studied using a potentiostat/galvanostat SAMA 500, electroanalyzer system, I. R. Iran. A three-electrode system was used, including a glassy carbon working electrode (d = 2.0 mm, purchased from Azar Electrode Co., Urmia, I.R. Iran), an Ag/AgCl (saturated KCl) reference electrode and a Pt wire auxiliary electrode.... 

    Electrochemical determination of CdS band edges and semiconducting parameters

    , Article Bulletin of the Chemical Society of Japan ; Volume 88, Issue 6 , February , 2015 , Pages 814-820 ; 00092673 (ISSN) Miandari, S ; Jafarian, M ; Mahjani, M. G ; Gobal, F ; Heidaripour, A ; Sharif University of Technology
    Chemical Society of Japan  2015
    Abstract
    Cadmium sulfide (CdS) thin film was electrodeposited on indium tin oxide (ITO) by chronoamperometry. The SEM images showed that hexagonal sheets of CdS deposited on the ITO surface. The X-ray diffraction (XRD) analysis confirmed this structure for CdS crystals and the average of crystalline size and the lattice constant parameters are approximately 39.54 and a = 0.4136, c = 0.6696 nm respectively. Photo-electrochemical investigations were performed by cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) techniques. CdS band edges and density of states (DOS) were determined by CV technique. The band gap energy (Ebg) was measured... 

    Au-Pd bimetallic nanoparticle electrodes for direct electroreduction of hexavalent chromium complexes

    , Article Australian Journal of Chemistry ; Volume 69, Issue 4 , 2016 , Pages 423-430 ; 00049425 (ISSN) Moakhar, R. S ; Hariri, M. B ; Kushwaha, A ; Dolati, A ; Ghorbani, M ; Goh, G. K. L ; Sharif University of Technology
    CSIRO  2016
    Abstract
    This paper reports a simple, low-cost, and effective electrochemical technique for sensing and reducing CrVI based on a Au-Pd bimetallic nanoparticle (BNP)-decorated indium tin oxide (ITO) conducting glass electrode. It was observed that the Au-Pd BNP-decorated ITO electrode could significantly boost the electrochemical reduction of CrVI when compared with either Au nanoparticle- or Pd nanoparticle-decorated ITO electrodes. These BNP-decorated electrodes exhibited a wide linear concentration range of 0.001-100 μM, a very low detection limit (signal-to-noise ratio = 3) of 0.3 nM, and a high sensitivity of 1.701 μA μM-1. From electrochemical impedance spectroscopy, it was revealed that this... 

    Controlled engineering of WS2 nanosheets-CdS nanoparticle heterojunction with enhanced photoelectrochemical activity

    , Article Solar Energy Materials and Solar Cells ; Volume 141 , 2015 , Pages 260-269 ; 09270248 (ISSN) Zirak, M ; Zhao, M ; Moradlou, O ; Samadi, M ; Sarikhani, N ; Wang, Q ; Zhang, H. L ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract We report the well-controlled preparation of WS2 nanosheets-CdS nanoparticle heterojunction for photoelectrochemical (PEC) water splitting application. The WS2 nanosheets with an average thickness of ~5 nm and lateral dimensions of ~200 nm were synthesized via liquid phase exfoliation of bulk WS2 in water/ethanol solution, followed by deposition onto ITO substrate via electrophoretic method. CdS nanoparticles were grown via facile successive ion layer absorption and reaction (SILAR) method. Using these two well-controlled methods, CdS/WS2/ITO and WS2/CdS/ITO systems were fabricated. The loading of WS2 nanosheets was... 

    Modification of nanostructured anodized aluminum coatings by pulse current mode

    , Article Surface and Coatings Technology ; Volume 278 , 2015 , Pages 48-55 ; 02578972 (ISSN) Mohammadi, I ; Afshar, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, the effects of pulse current mode on corrosion resistance and mechanical properties of anodized coatings were explored. Thickness and hardness measurements, polarization and electrochemical impedance spectroscopy were employed to take mechanical and corrosion behaviors of the anodized coatings into consideration. Also, field-emission scanning electron microscopy (FE-SEM) was utilized to characterize the surface morphology of the coatings. It was shown that in short anodizing times, coating thickness is controlled by the heat concentrated on coating. Although at prolonged anodizing times, the coating thickness is affected by average current density. Hardness measurements showed... 

    The influence of pulse plating parameters on the electrocodeposition of Ni-TiO2 nanocomposite single layer and multilayer structures on copper substrates

    , Article Surface and Coatings Technology ; Volume 262 , 2015 , Pages 173-183 ; 02578972 (ISSN) Mohajeri, S ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from a Watts bath containing a TiO2 sol on copper substrates was investigated by different deposition techniques. Compared with direct current (DC) deposition, both pulse plating (PP) and pulse reverse plating (PRP) facilitated higher incorporations of TiO2 nanoparticles. Morphological studies conducted by scanning electron microscopy and field emission scanning electron microscopy revealed that the microstructure of the Ni-TiO2 nanocomposite coatings are affected both by pulse potentials and durations, indicating that higher incorporations of TiO2 nanoparticles refine the microstructure. The results... 

    Effects of zirconia content on characteristics and corrosion behavior of hydroxyapatite/ZrO2 biocomposite coatings codeposited by electrodeposition

    , Article Surface and Coatings Technology ; Volume 262 , January , 2015 , Pages 166-172 ; 02578972 (ISSN) Shojaee, P ; Afshar, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    HAp and HAp/ZrO2 composite coatings were successfully electrodepesited on 316L stainless steel substrates in the solutions containing ZrO2 particles at different concentrations. The effects of ZrO2 content on characteristics of the coatings were investigated using X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM) and bonding strength test. Polarization and electrochemical impedance spectroscopy measurements were carried out in order to evaluate corrosion behavior of the coatings. In-vitro test in SBF and further SEM observations were performed to examine bioactivity of the coatings. HAp/ZrO2 composite coatings showed better... 

    PH responsive Ce(III) loaded polyaniline nanofibers for self-healing corrosion protection of AA2024-T3

    , Article Progress in Organic Coatings ; Volume 99 , 2016 , Pages 197-209 ; 03009440 (ISSN) Pirhady Tavandashti, N ; Ghorbani, M ; Shojaei, A ; Gonzalez Garcia, Y ; Terryn, H ; Mol, J. M. C ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Cerium nitrate loaded polyaniline (PANI) nanofibers were synthesized in this work via a chemical route. PANI nanofibers act as a host structure for the corrosion inhibitor, forming a Ce(III)-PANI complex. This complex is pH sensitive, and a change of pH can cause breaking of the complex and releasing of Ce(III). The Ce(III) loaded PANI nanofibers were embedded into epoxy ester coating and the self-healing corrosion protection ability was investigated by Scanning Vibrating Electrode Technique (SVET) and Electrochemical Impedance Spectroscopy (EIS). The results showed that by embedding of Ce(III) loaded PANI nanofibers into the coatings a superior corrosion protection and self-healing... 

    A low cost and highly active non-noble alloy electrocatalyst for hydrazine oxidation based on nickel ternary alloy at the surface of graphite electrode

    , Article Journal of Electroanalytical Chemistry ; Volume 763 , 2016 , Pages 134-140 ; 15726657 (ISSN) Jafarian, M ; Rostami, T ; Mahjani, M. G ; Gobal, F ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    The electrocatalytic oxidation of hydrazine was studied over Ni, Cu, Co and Ni-based ternary alloy on graphite electrodes in alkaline solution. The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and the catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of hydrazine, the modified Ni-based ternary alloy electrode (G/NiCuCo) exhibited a good catalytic activity for the oxidation of hydrazine at a reduced overpotential and it has a significant high... 

    Electrophoretic deposition of nano-zirconia coating on AZ91D magnesium alloy for bio-corrosion control purposes

    , Article Surface and Coatings Technology ; Volume 311 , 2017 , Pages 182-190 ; 02578972 (ISSN) Amiri, H ; Mohammadi, I ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Magnesium alloys are considered as potential biodegradable biomaterials in hard tissue implants. However, the fast degradation rate of these alloys in the biological environment causes failure of the implant just prior to the desirable time. In the present work, in order to decrease and curb the bio-corrosion rate of AZ91D Magnesium alloy, zirconia, which is classified as a biocompatible ceramic, was coated on the alloy surface through electrophoretic deposition (EPD) technique. The effects of alterations in the EPD parameters such as current density, duration time and ZrO2 particles concentration on coating properties including thickness, morphology and adhesion were then characterized.... 

    Fabrication and characterization of graphene-based carbon hollow spheres for encapsulation of organic corrosion inhibitors

    , Article Chemical Engineering Journal ; Volume 352 , 2018 , Pages 909-922 ; 13858947 (ISSN) Haddadi, S. A ; Ramazani, S. A. A ; Mahdavian, M ; Taheri, P ; Mol, J. M. C ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this work, we synthesized carbon hollow spheres (CHSs) using the silica templating method, encapsulated 2-mercaptobenzimidazole (MBI) inhibitor in the CHSs and evaluated their corrosion inhibition performance upon exposure of mild steel to a saline solution containing the released inhibitor. The effects of silica template surface modification on the CHS structure was evaluated, while the structure and morphology of the synthesized CHS was analyzed using field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), Raman spectroscopy and X-ray diffraction (XRD) spectroscopy. Furthermore, thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy... 

    Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus

    , Article Bioelectrochemistry ; Volume 123 , 2018 , Pages 70-76 ; 15675394 (ISSN) Ranjbar, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Since that pathogenic bacteria are major threats to human health, this paper describes the fabrication of an effective and durable sensing platform based on gold nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite (AuNPs/CNPs/CNFs) at the surface of glassy carbon electrode for sensitive and selective detection of Staphylococcus aureus (S. aureus). The AuNPs/CNPs/CNFs nanocomposite with the high surface area, excellent conductivity, and good biocompatibility was used for self-assembled of the thiolated specific S. aureus aptamer as a sensing element. The surface morphology of AuNPs/CNPs/CNFs nanocomposite was characterized with field emission scanning electron microscopy... 

    Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: Application toward BRCA1 sensing

    , Article Sensors and Actuators, B: Chemical ; Volume 266 , 2018 , Pages 160-169 ; 09254005 (ISSN) Shahrokhian, S ; Salimian, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Breast Cancer (BRCA) is the most common threat in women worldwide. Increasing death rate of diagnosed cases is the main leading cause of designing specific genosensors for BRCA − related cancer detection. In the present study, an ultrasensitive label − free electrochemical DNA (E − DNA) sensor based on conducting polymer/reduced graphene − oxide platform has been developed for the detection of BRCA1 gene. An electrochemical method was applied as a simple and controllable technique for the electrochemical reduction of graphene oxide and also, electro − polymerization of pyrrole − 3 − carboxylic acid monomer. The results of the present work show that the polymer − coated reduced graphene −... 

    Nanoporous gold as a suitable substrate for preparation of a new sensitive electrochemical aptasensor for detection of salmonella typhimurium

    , Article Sensors and Actuators, B: Chemical ; Volume 255 , 2018 , Pages 1536-1544 ; 09254005 (ISSN) Ranjbar, S ; Shahrokhian, S ; Nurmohammadi, F ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Nowadays, achievement to easy, fast, reliable and cost-effective techniques and tools is one of the most important challenges in detection of microorganisms. Salmonella typhimurium is one of the most important pathogenic bacteria that affect the human health and environmental infections. In this work we report a new, stable, biocompatible and cost-effective platform for construction of an aptasensor based on nanoporous gold (NPG) for detection of S. typhimurium. Nanoporous gold is electrochemically synthesized using Au-Cu alloy at the surface of Au/GCE. Thiol functionalized aptamer is used for effective linking to the surface of NPG/Au/GCE via self-assemble monolayers (SAMs) formation.... 

    An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment

    , Article Analytica Chimica Acta ; 2018 ; 00032670 (ISSN) Shariati, M ; Ghorbani, M ; Sasanpour, P ; Karimizefreh, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    An impedimetric human papilloma virus (HPV) DNA biosensor based on gold nanotubes (AuNTs) in label free detection was materialized. The AuNTs decorated nanoporous polycarbonate (AuNTs-PC) template as biosensor electrode was fabricated by electrodeposition method. The single strand DNA (ss-DNA) probe was covalently immobilized onto the AuNTs-PC electrode. The hybridization of target sequences with the ss-DNA probe was observed by the electrochemical impedance spectroscopy (EIS). The biosensor showed high selectivity and could differentiate between the complementary, mismatch and non-complementary DNA sequences. The EIS measurements were matched to Randle's equivalent circuit. The... 

    Synthesis and characterization of photocatalytically active crumpled-shape nanocomposites of nitrogen and sulfur co-doped ZnO–CeO2

    , Article Solar Energy Materials and Solar Cells ; Volume 203 , 2019 ; 09270248 (ISSN) Rahemi Ardekani, S ; Sabour Rouh Aghdam, A ; Nazari, M ; Bayat, A ; Saievar Iranizad, E ; Najafi Liavali, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, crumpled-shape nanocomposite of nitrogen and sulfur co-doped ZnO–CeO2 (NSZC) was deposited on FTO substrate using one-step ultrasonic spray pyrolysis. Zinc acetate, cerium nitrate, and thiourea were dissolved in deionized water and used as starting solution. The samples were characterized using FESEM, XRD, UV–vis spectroscopy, EIS, and PL. The as-prepared nitrogen and sulfur co-doped ZnO–CeO2 nanocomposites were evaluated as high photocatalysts for degradation of methyl orange. Nearly 100% photocatalytic degradation of methyl orange was achieved for 180 min. The photoluminescence and electrochemical impedance spectroscopy revealed that co-doping of nitrogen and sulfur could... 

    Synthesis and application of mesoporous carbon nanospheres containing walnut extract for fabrication of active protective epoxy coatings

    , Article Progress in Organic Coatings ; Volume 133 , 2019 , Pages 206-219 ; 03009440 (ISSN) Haddadi, S. A ; Behroozi Kohlan, T ; Momeni, S ; Ramazani S. A., A ; Mahdavian, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this article, the synthesis procedure of mesoporous carbon nanospheres (MCNSs) using silica hard-templates, doping of the nanospheres with walnut extract, and their impact on active protective properties of an epoxy coating are presented. Field emission scanning electron microscope (FE-SEM) results showed that the synthesis of these nanocontainers was successfully done in spherical form. Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR) results showed that walnut extract as a green inhibitor was doped into the pores of nanocapsules. Corrosion resistance of the mild steel samples in the 3.5 wt.% NaCl solution in the presence and absence of walnut extract... 

    An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment

    , Article Analytica Chimica Acta ; Volume 1048 , 2019 , Pages 31-41 ; 00032670 (ISSN) Shariati, M ; Ghorbani, M ; Sasanpour, P ; Karimizefreh, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    An impedimetric human papilloma virus (HPV) DNA biosensor based on gold nanotubes (AuNTs) in label free detection was materialized. The AuNTs decorated nanoporous polycarbonate (AuNTs-PC) template as biosensor electrode was fabricated by electrodeposition method. The single strand DNA (ss-DNA) probe was covalently immobilized onto the AuNTs-PC electrode. The hybridization of target sequences with the ss-DNA probe was observed by the electrochemical impedance spectroscopy (EIS). The biosensor showed high selectivity and could differentiate between the complementary, mismatch and non-complementary DNA sequences. The EIS measurements were matched to Randle's equivalent circuit. The...